INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

TABLE OF CONTENTS

1.0 S	UMM	(ARY	5
	1.1	The Jiama Project	5
	1.2	Geology and Mineralization	6
	1.3	Resource and Reserve Estimates	7
	1.4	Mining Operation	10
	1.5	Processing	11
	1.6	Production	14
	1.7	Operating Costs and Capital Costs	17
	1.8	Project Economics	22
	1.9	Environmental, Occupational Health and Safety Issues	26
	1.10	Conclusions and Recommendation	27
2.0	INTE	RODUCTION	29
3.0	REL	IANCE ON OTHER EXPERTS	31
4.0	PRO	PERTY DESCRIPTION AND LOCATION	32
5.0	PHY	SIOGRAPHY, CLIMATE, ACCESSIBILITY, LOCAL RESOURCES AND	
	INFF	RASTRUCTURE	37
6.0	HIST	ORY	38
7.0	GEO	LOGICAL SETTING	40
	7.1	Regional Geological Setting	40
	7.2	Local Geology	41
	7.3	Deposit Geology	42
8.0	DEP	OSIT TYPES	42
9.0	MIN	ERALIZATION	43
	9.1	Skarn-Type Copper-Polymetallic Mineralization	43
	9.2	Hornfels-Type Copper-Polymetallic Mineralization	46
10.0	EXP	LORATION	47
	10.1	Brigade 6 Exploration Work in 1990s	47
	10.2	Huatailong Exploration Work in 2008 and 2009	47
11.0	DRII	LING	47
	11.1	Brigade 6 Drilling in the 1990s	47
	11.2	Huatailong Drilling in 2008 and 2009	48
		11.2.1 2008 Drilling	48
		11.2.2 2009 Drilling	52
	11.3	Discussion	53
12.0	SAM	PLING METHOD AND APPROACH	54
12.0	12.1	Brigade 6 Sampling in the 1990s	54
	12.2	Huatailong Sampling in 2008 and 2009	54
	12.3	Discussion	58
13.0	SAM	PLE PREPARATION. ANALYSES AND SECURITY	59
	13.1	Brigade 6 Work in the 1990s	59
	13.2	Huatailong Work in 2008 and 2009	59
14.0	DAT	A VERIFICATION	60
1 1.0	14.1	Brigade 6 Work in the 1990s	60
	14.2	Huatailong Work in 2008 and 2009	60
15.0	ADI		63
16.0	MET	ALLURGICAL TESTING AND MINERAL PROCESSING	63
10.0	16.1	Metallurgical Testing	63
	10.1	16.1.1 Test Samples	63
		16.1.2 Mineral Composition of Ores	65
		16.1.2 Tests and Results	66
		10.1.5 10000 unu iveouito	00

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

	16.2 Mineral Processing	68
	16.2 1 Plant Design	68
	16.2.2 Process and Flowsheat Description	60
	16.2.2 Figuinment	70
	16.2.5 Equipment	70
17.0		70
1/.0	MINERAL RESOURCE AND OKE RESERVE ESTIMATES	/1
	17.1 Mineral Resource Estimates	/1
	1/.1.1 Database used for Resource Modelling	12
	17.1.2 Procedures and Parameters Used for the Skarn-Type Resource Modelling	72
	17.1.3 Procedures and Parameters Used for the Hornfels-Type Resource Modelling	85
	17.1.4 Resource Estimation Results under the JORC Code	86
	17.2 Ore Reserve Estimates	88
	17.2.1 Economic Value Calculation of the Resource Model	88
	17.2.2 Mine Planning and Reserve Estimation for the Tongqianshan Pit	90
	17.2.3 Mine Planning and Reserve Estimation for the Niumatang Pit	90
	17.2.4 Underground Mine Planning and Reserve Estimation	91
	17.2.5 JORC Ore Reserve Statement for the Jiama Project	92
	17.3 Additional Exploration Potential	93
	17.4 Mine Life Analysis	94
	17.5 Resource/Reserve Reconciliation under the CIM Standards	94
18.0	INTERPRETATION AND CONCLUSIONS	94
19.0	RECOMMENDATIONS	95
	19.1 Exploration	95
	19.2 Open-pit Mining	95
	19.3 Underground Mining	96
	19.4 Processing	96
20.0	REFERENCES	96
21.0	ADDITIONAL REQUIREMENTS FOR TECHNICAL REPORTS ON DEVELOPMENT	70
21.0	PROPERTIES AND PRODUCTION PROPERTIES	97
	21.1 Mining Operations	07
	21.1 1 Open nit Mining	00
	21.1.1 Optil-pit Mining	90
	21.1.2 Onderground Winning	100
	21.1.5 Ofe Kall Hansportation System	100
	21.1.4 Life-of-Mine Forecast Mine Production Plan	100
	21.2 Processing	101
	21.3 Markets, Contracts, and Taxes	101
	21.4 Production	103
	21.5 Operating Costs	105
	21.6 Capital Costs	110
	21.7 Base Case Economic Analysis	112
	21.8 Environmental and Community Considerations	115
	21.8.1 Environment	115
	21.8.2 Community	117
	21.9 Occupational Health and Safety	118
	21.10 Risk Analysis	118
22.0	DATE PAGE AND CERTIFICATES	123

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

LIST OF TABLES

Table 1.1	Skarn-Type Mineral Resource Estimates for the Jiama Project as of June 30, 2010	8
Table 1.2	Hornfels-Type Mineral Resource Estimates for the Jiama Project as of June 30, 2010	8
Table 1.3	JORC Skarn-Type Ore Reserve Estimates for the Jiama Project as of June 30, 2010	10
Table 1.4	Life-of-Mine Forecast Production for the Jiama Project	14
Table 1.5	Life-of-Mine Forecast Operating Costs for the Jiama Project	18
Table 1.6	Initial Capital Cost Estimates for the 12.000 tpd Production Capacity of the Jiama	
	Project	20
Table 1.7	Life-of-Mine Forecast Capital Costs for the Jiama Project	21
Table 1.8	Metal Prices Used for Base Case Economic Analysis for the Jiama Project	22
Table 1.9	Base Case Economic Analysis for the Jiama Project	23
Table 11.1	1990s Brigade 6 Drill Holes for the Jiama Project	48
Table 11.2	2008 Huatailong Drill Holes for the Jiama Project	49
Table 11.3	2009 Huatailong Drill Holes for the Jiama Project	53
Table 12.1	Skarn-Type Mineralized Intervals in 1990s Drill Holes for the Jiama Project	54
Table 12.2	Skarn-Type Mineralized Intervals in 2008 Drill Holes for the Jiama Project	55
Table 12.3	Skarn-Type Mineralized Intervals in 2009 Drill Holes for the Jiama Project	58
Table 16.1	Mineral Composition of Jiama Ore	65
Table 16.2	Summary of Flotation Test Results for Copper-Lead Ore	66
Table 16.3	Summary of Flotation Test Results for Copper-Molvbdenum Ore	67
Table 16.4	Chemical Analyses of Flotation Concentrates Obtained from the Testwork	68
Table 17.1	Drill Hole Database used for Jiama Project Resource Estimation	72
Table 17.2	Original Length-Weighted Metal Assay Grade Statistics inside the Mineralized Zones	74
Table 17.3	Capped Length-Weighted Metal Assay Grade Statistics inside the Mineralized Zones	74
Table 17.4	Capped Length-Weighted 5-m Length Skarn Composite Metal Grade Statistics	76
Table 17.5	Correlogram Models for the I-1 Mineralized Body of the Jiama Project	77
Table 17.6	Original Length-Weighted Metal Assay Grade Statistics inside the Hornfels-Type	
	Mineralized Zones	85
Table 17.7	Length-Weighted 5-m Length Hornfels Composite Metal Grade Statistics	85
Table 17.8	JORC Skarn-Type Resource Estimates for the Jiama Project as of June 30, 2010	86
Table 17.9	Measured and Indicated Skarn-Type Resource Estimates for the Jiama Project by Level	87
Table 17.10	Hornfels-Type Mineral Resource Estimates for the Jiama Project as of June 30, 2010	87
Table 17.11	Metal in Concentrate Prices and Processing Recoveries used for Mine Planning	88
Table 17.12	Mining Dilution and Mining Recovery Factors for Reserve Estimation of the Jiama	
	Project	89
Table 17.13	Cutoff Unit Economic Value for Reserve Estimation of the Jiama Project	92
Table 17.14	JORC Ore Reserve Estimates for the Jiama Project as of June 30, 2010	93
Table 21.1	Life-of-Mine Forecast Mine Production for the Jiama Project	97
Table 21.2	Life-of Mine Forecast Production for the Jiama Project	103
Table 21.3	Life-of-Mine Forecast Operating Costs for the Jiama Project	107
Table 21.4	Life-of-Mine Forecast Operating Costs by Categories for the Jiama Project	108
Table 21.5	Initial Capital Cost Estimates for the 12,000 tpd Production Capacity of the Jiama	
	Project	110
Table 21.6	Life-of-Mine Forecast Capital Costs for the Jiama Project	111
Table 21.7	Metal Prices Used for Base Case Economic Analysis for the Jiama Project	112
Table 21.8	Base Case Economic Analysis for the Jiama Project	113
Table 21.9	Sensitivity analysis for after-tax NPV as of December 31, 2009 for the Jiama Project	115
Table 21.10	Tailings Storage Facility for the Jiama Project	117

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

LIST OF FIGURES

Figure 4.1	Location of the Jiama Project	32
Figure 4.2	Location of the mining/exploration licenses held by Huatailong	34
Figure 4.3	Jiama Project site map	36
Figure 7.1	Tectonic Setting of the Jiama Project	40
Figure 7.2	Geology and drill holes of the Jiama Project area	41
Figure 9.1	3-D view of the I-1 mineralized body for the Jiama Project	43
Figure 9.2	Copper and molybdenum grade distribution in the Jiama deposit	44
Figure 9.3	Gold and silver grade distribution in the Jiama deposit	45
Figure 9.4	Lead and zinc grade distribution in the Jiama deposit	45
Figure 9.5	3-D view of the Hornfels-Type Mineralization of the Jiama Project	46
Figure 14.1	Scatter plots of original assay results and internal check assay results	61
Figure 14.2	Scatter plots of original assay results and external check assay results	62
Figure 16.1	Processing Flowsheet body for the Jiama Ore	69
Figure 17.1	Sectional view of the I-1 mineralized body for the Jiama Project	73
Figure 17.2	Metal grade probability distribution and capping grade determination for the Jiama	
	Project	75
Figure 17.3	Correlogram models for the flatter domain of the I-1 mineralized body	78
Figure 17.4	Correlogram models for the steep-dip domain of the I-1 mineralized body	79
Figure 17.5	Resource classification for the Jiama Project resource model	80
Figure 17.6	Comparison of OK model block grades and composite grades on a cross section	82
Figure 17.7	Comparison of OK model block grades and composite grades on a cross section	83
Figure 17.8	Comparison of OK model block grades and composite grades on a cross section	84
Figure 21.1	After-tax NPV sensitivity analysis for the Jiama Project	115

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

1.0 SUMMARY

This independent technical report ("ITR") is prepared for China Gold International Resources Corporation Limited ("China Gold International" or the "Company", previously Jinshan Gold Mines Inc.), a Canadian company whose shares are listed on the Toronto Stock Exchange ("TSX"), to support its initial public offering ("IPO") on the main board of The Stock Exchange of Hong Kong Limited ("SEHK") and its filings under Canadian securities laws. China National Gold Group Hong Kong Limited ("China Gold Group HK") is the largest shareholder of China Gold International and currently owns approximately 39% of the listed shares. This ITR covers the Jiama copper-polymetallic project ("Jiama Project") currently under construction in Tibet Autonomous Region of the People's Republic of China ("PRC" or "China"). The Jiama Project will be injected into the Company during the IPO process.

1.1 The Jiama Project

The Jiama Project is currently owned and operated by Tibet Huatailong Mining Development Company Limited ("Huatailong"), which is wholly owned by a joint venture ("JV") company between China Gold Group HK (51%) and Rapid Result Investment Limited ("Rapid Result", 49%), a company registered in the British Virgin Islands ("BVI").

Jiama is a large, skarn-type, copper-polymetallic deposit and will be developed into a large, combined open-pit and underground mining operation, producing copper, molybdenum, and lead concentrates with significant gold and silver contents using flotation processing methods. There is also a large, less-well defined, lower-grade, hornfels-type, copper-polymetallic mineralization above the skarn-type mineralization in the Jiama Project. The designed Phase I production capacity for the skarntype mineralization is 6,000 tonnes per day ("tpd") of ore, and Phase II of the project will increase the production capacity to 12,000 tpd of ore. During BDASIA's site visit in December 2009, construction of the Phase I, 6,000-tpd flotation processing plant and related tailings storage facilities ("TSF") was near completion. Pre-production stripping of the smaller Tongqianshan pit was also near completion, and a small stockpile of ore mined from the pit was accumulated at the processing plant site. Pre-production stripping for the larger Niumatang pit was initialized, and construction of the primary underground haulage tunnel at a mean sea level ("MSL") elevation of 4,261 m and the secondary underground ore haulage tunnel at a MSL elevation of 4,087 m was well under way. It was reported by Huatailong that the Phase I concentrator trial production started in July 2010, and Phase I commercial mining/processing operating of the Jiama Project started in September 2010. When it is fully developed, the Jiama Project will become one of the largest copper-polymetallic mining operations in China in terms of ore production rate, total metal production, and mineral resources considered compliant under the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves (the "JORC Code") prepared by the Joint Ore Reserves Committee of the Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists, and Minerals Council of Australia in 1999 and revised in 2004 and the Canadian Institute of Mining, Metallurgy and Petroleum ("CIM") Standards - for Mineral Resources and Mineral Reserves prepared by the CIM Standing Committee on Reserve Definitions and adopted by the CIM Council on December 11, 2005.

Access to the Jiama Project site is good. Surface water is sufficient to support the planned production. A new 110-kV power transmission line has been constructed to connect the project site to the Central Tibet power grid. The Tibet government has been executing a power-supply development plan for the period from 2006 to 2010, which includes building several new power generation plants,

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

with the goal of connecting the Central Tibet power grid to the national power grid in China. When this development plan is completed, the supply of electricity will be sufficient for Phase I mine production as well as the Phase II expansion at Jiama. The Jiama Project has been designated as one of the most important projects in Tibet and has been granted priority in electricity supply by the Tibet government. However, power shortage for production, especially during the dry winter months, could be experienced before the government's power-supply development plan is completed.

Huatailong holds two valid mining licenses and two valid surrounding exploration licenses, which combine to yield a total area of 145.50 square kilometers ("km²") for the Jiama Project. The Jiama mining license was consolidated in 2007 from four mining licenses held by different operators in accordance with the Chinese government's consolidation policy for mining properties; the Niumatang mining license adjacent to the Jiama mining license was issued to Huatailong in July 2010. All the currently defined mineral resources and ore reserves are covered by these mining and exploration licenses.

Mining operation for the Jiama Project is subject to a resource tax of RMB15 (US\$2.21) per tonne of the processed ore and a resource compensation levy of 2% for the sales revenue generated from the operation. Copper, molybdenum, lead, zinc, and silver produced from the mine are subject to a value-added-tax ("VAT") of 17%. Gold production is exempted from VAT in China. The Jiama Project is also subject to a city-maintenance-and-construction tax of 7% of the VAT and an education tax of 3% of the VAT. The corporate income tax rate for Huatailong is 15%.

The Jiama Project is required to post an environmental reclamation bond of approximately RMB35 million ("M") (US\$5.2 M). A first payment of RMB1.5 M (US\$0.22 M) was made in 2009, and the remaining amount will be paid in five installments in the 5 years following the commencement of Phase I production at the Jiama Project.

1.2 Geology and Mineralization

The Jiama deposit is a skarn-type, copper-polymetallic deposit controlled mostly by an interlayer structural zone between the underlying Upper-Jurassic Duodigou Formation marbles and the overlying Lower-Cretaceous Linbuzong Formation hornfels. Some lower-grade copper-polymetallic mineralization has also been encountered in the overlying Linbuzong hornfels. The hornfels-type mineralization is potentially very large; however, its existence and economic meaning will need to be determined by further drilling and technical studies.

The I-1 mineralized body controlled by the interlayer structural zone is the primary skarn-type mineralized body in the deposit. This mineralized body is stratiform, tabular, or lenticular in shape. It strikes west-northwesterly and dips to the northeast. The upper part of the mineralized body has a steeper dip angle, averaging around 60°, whereas the lower portion of the mineralized body has a much flatter angle, averaging around 10°. The I-1 mineralized body is approximately 2,400-m long along strike and 150-m to over 1,900-m wide in the dip direction. Its thickness ranges from 2 m to 240 m, with an average of 33.24 m. This mineralized body was defined by over 170 drill holes and contains over 97% of the currently defined mineral resources in the deposit.

Seven other smaller mineralized bodies (I-2 to I-8) have also been modeled, but they are generally not well defined by the current drilling data in the Jiama deposit.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Copper is the most important economic metal in the deposit. Other metals with economic value include molybdenum, lead, gold, silver, and zinc. These metals are distributed differently in the deposits. In general, the copper grade is higher at the upper and northwest portions and lower in the northeast portion. Molybdenum seems negatively correlated with copper, with higher grades in the northeast portion of the deposit. Gold and silver have a distribution pattern similar to that of copper in the deposit. Lead and zinc are only enriched in the upper part at the southwest portion of the I-1 mineralized body, which was part of the historical mining targets. Contents of harmful elements, such as arsenic, antimony, and mercury, are generally low in the deposit and will not cause a problem for marketing concentrate produced from the deposit.

Metallic minerals in the deposit include chalcopyrite, bornite, molybdenite, tetrahedrite, galena, sphalerite, chalcocite, digenite, covellite, native copper, pyrite, marcasite, pyrrhotite, magnetite, limonite, malachite, and azurite. Nonmetallic minerals include garnet, diopside, wollastonite, tremolite, epidote, quartz, feldspar, biotite, sericite, muscovite, chlorite, calcite, anhydrite, fluorite, and kaolinite. The metallic minerals occur as disseminations, massive aggregates, or stockwork in the skarns.

Oxidation occurs only at the near surface portion of the deposit. The majority of the defined mineral resources are in the unoxidized sulfide zone.

1.3 Resource and Reserve Estimates

Current mineral resources of the Jiama Project under the JORC Code were estimated by Competent Person Dr. Qingping Deng, of Behre Dolbear ASIA, Inc. ("BDASIA"), using the MineSight computer mining software system and the drill hole database as of the end of October 2009 and a geological model developed by geologists of the Mineral Resource Research Institute (the "Resource Institute") of Chinese Academy of Geological Sciences. The geological database used for the resource estimation consists of 22 historical diamond drill holes ("DDH") with a total drilled length of 6,518 meters ("m"), 10 historical surface trenches with a total channel-sampled length of 349 m, and 188 new DDH holes with a total drilled length of 62,511 m completed by Huatailong in 2008 and 2009.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Skarn-type mineral resources, inclusive of ore reserves, as of June 30, 2010 under the Australasian JORC Code for the Jiama Project are summarized in Table 1.1. These resource estimates are also compliant with the CIM standards and Canadian National Instrument 43-101 ("NI 43-101"). (Cutoff grades used for the resource summary are 0.3% copper, or 0.03% molybdenum, or 1% lead, or 1% zinc.

Table 1.1Skarn-Type Mineral Resource Estimates for the Jiama Project as of June 30, 2010

(Cutoff grade for the resource estimate is 0.3% Cu, or 0.03% Mo, or 1% Pb, or 1% Zn.)

			Gr	ade					Contain	ed Metal		
kt	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %	Cu kt	Mo kt	Au t	Ag t	Pb kt	Zn kt
					Measu	red Res	ource					
82,928	0.83	0.042	0.30	16.0	0.06	0.05	686.9	34.42	25.11	1,326	51.9	38.7
					Indicat	ted Reso	ource					
102,187	0.68	0.041	0.22	13.7	0.10	0.05	691.6	42.07	22.33	1,396	100.6	55.4
				Meas	ured + I	ndicate	d Resour	ces				
185,116	0.74	0.041	0.26	14.7	0.08	0.05	1,378.5	76.49	47.44	2,722	152.5	94.1
					Inferr	ed Reso	urce					
165,763	0.64	0.053	0.21	13.1	0.14	0.06	1,068.0	88.57	35.42	2,179	239.0	106.9

Hornfels-type mineral resources, as of June 30, 2010 under the Australasian JORC Code for the Jiama Project, are summarized in Table 1.2. Only inferred resources were estimated for the hornfels-type mineralization as the mineralization is currently defined by only widely-spaced drill holes. These resource estimates are also compliant with the CIM standards and Canadian NI 43-101. Cutoff grades used for the resource summary are 0.3% copper, or 0.03% molybdenum, or 1% lead, or 1% zinc.

Table 1.2Hornfels-Type Mineral Resource Estimates for the Jiama Project as of June 30, 2010

(Cutoff grade for the resource estimate is 0.3% Cu, or 0.03% Mo, or 1% Pb, or 1% Zn.)

			Gr	ade					Contain	ed Metal		
Mt	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %	Cu kt	Mo kt	Au t	Ag t	Pb kt	Zn kt
					Inferr	ed Reso	urce					
655	0.23	0.045	0.02	1.17	0.00	0.01	1,500	290	13	770		

BDASIA would note that mineral resources that are not mineral reserves do not have demonstrated economic viability. BDASIA would also note that the inferred resource estimates have a great amount of uncertainty as to their existence, and economic and legal feasibility. It cannot be assumed that all of an inferred mineral resource will be upgraded to a higher resource category. Under Canadian rules, estimates of inferred mineral resources may not form the basis of feasibility or pre-feasibility studies, or economic studies except for preliminary assessment or a scoping study as defined under Canadian NI 43-101. Investors are cautioned not to assume that all of the inferred resources exists, or is economically or legally mineable.

BDASIA's review indicates that drilling, sampling, sample preparation and analysis, quality control, and resource estimation have followed standard industry practice.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Mine planning and ore reserve estimation for the skarn-type mineralization were conducted by the Changsha Engineering and Research Institute of Non-ferrous Metals Metallurgy (the "Changsha Institute") in Changsha, Hunan Province of China, a state-owned and licensed mining engineering company, using the Jiama computer resource model produced by BDASIA and other appropriate technical and economic parameters, and are summarized in its December 2009 feasibility study report for the Jiama Project. Two open pits, the smaller Tongqianshan pit and the larger Niumatang pit, and an underground mine have been designed for the Jiama Project. The Changsha Institute's feasibility study mine planning and ore reserve estimation have been reviewed by BDASIA in this ITR.

BDASIA has reviewed the procedures and parameters used in the Changsha Institute's reserve estimation and the reserve estimation results, and considers that the reserve estimates have been completed in accordance with the industry standards and that the results are reasonable. Therefore, BDASIA has adopted the Changsha Institute's reserve estimates in this ITR.

Skarn-type ore reserve estimates under the JORC Code as of June 30, 2010 for the Jiama Project are summarized in Table 1.3. The block economic value calculated from selected metal in concentrate prices, metallurgical recoveries, and appropriate mining dilution factors and mining recovery factors was used as the cutoff parameter for the Jiama reserve estimates. The economic cutoff values for the Jiama reserve estimates are RMB276.5/t (US\$40.78/t) for the smaller Tongqianshan pit, RMB249.0/t (US\$36.73/t) for the larger Niumatang pit, RMB276.5/t (US\$40.78/t) for the upper, steeply-dipping ore zone of the underground mine, and RMB249.0/t (US\$36.73/t) for the lower, flatter ore zone of the underground mine. These reserve estimates are also compliant with the CIM Standards as the JORC and CIM reserve classifications are exactly the same.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

				Gra	ıde				C	ontaine	l Metal		
Туре	kt	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %	Cu kt	Mo kt	Au t	Ag t	Pb kt	Zn kt
Tongqianshan Pit													
Proved	1,208	0.64	0.015	0.20	10.0	0.21	0.05	7.7	0.18	0.24	12	2.5	0.6
Probable	2,524	0.77	0.012	0.24	13.4	0.51	0.09	19.4	0.29	0.60	34	13.0	2.3
Subtotal	3,733	0.73	0.013	0.23	12.3	0.41	0.08	27.1	0.47	0.84	46	15.5	2.8
Waste	20,826												
Strip ratio	5.58												
Niumatang Pit													
Proved	14,473	1.04	0.039	0.45	21.6	0.03	0.03	150.9	5.66	6.56	313	4.2	3.9
Probable	5,423	1.06	0.035	0.49	21.7	0.03	0.03	57.7	1.89	2.63	118	1.8	1.7
Subtotal	19,897	1.05	0.038	0.46	21.6	0.03	0.03	208.6	7.55	9.19	430	6.0	5.6
Waste	146,224												
Strip ratio	7.35												
Total Open Pits													
Proved	15,682	1.01	0.037	0.43	20.7	0.04	0.03	158.6	5.83	6.80	325	6.7	4.5
Probable	7,948	0.97	0.027	0.41	19.1	0.19	0.05	77.2	2.18	3.23	151	14.8	4.0
Subtotal	23,630	1.00	0.034	0.42	20.1	0.09	0.04	235.8	8.02	10.03	476	21.5	8.5
Waste	167,050												
Strip ratio	7.07												
Underground Reserve													
Proved	37,860	0.75	0.038	0.27	14.5	0.06	0.04	284.2	14.48	10.3	550	22.9	16.9
Probable	44,410	0.82	0.042	0.27	16.0	0.09	0.05	365.6	18.77	12.0	712	40.6	23.2
Subtotal	82,269	0.79	0.040	0.27	15.3	0.08	0.05	649.8	33.25	22.3	1,262	63.5	40.1
Total Reserves													
Proved	53,541	0.83	0.038	0.32	16.3	0.06	0.04	442.8	20.31	17.1	874	29.6	21.3
Probable	52,358	0.85	0.040	0.29	16.5	0.11	0.05	442.8	20.96	15.2	864	55.4	27.2
Total	105.899	0.84	0.039	0.31	16.4	0.08	0.05	885.6	41.27	32.3	1.738	85.0	48.6

Table 1.3

3010

1.4 **Mining Operation**

The Jiama project mine plan contemplates mining approximately 105.9 million tonnes ("Mt") of ore by open-pit and underground mining operations at a production rate of 3.6 million tonnes per annum ("Mtpa") or 12,000 tpd based on 300 working days per annum over a mine life of 31 years. Open-pit operation start in late July 2010 from the smaller Tonggianshan pit at a rate of 3,000 tpd or 900,000 tpa; open-pit mining at the Niumatang pit will start in April 2011 at a rate of 6,000 tpd or 1.8 Mtpa, increasing the total open-pit mining production to 9,000 tpd or 2.7 Mtpa; underground mining is planned to start in January 2012 at a rate of 3,000 tpd or 900,000 tpa, increasing the total mine production to 12,000 tpd or 3.6 Mtpa. Underground mining is planned to ramp up to 6,000 tpd or 1.8 Mtpa in 2014 when the Tongqianshan pit will be depleted. Therefore, the mine will maintain a total production rate of 12,000 tpd or 3.6 Mtpa. At the depletion of the Niumatang pit in 2021, underground capacity will be increased to 12,000 tpd or 3.6 Mtpa. Ore from the open pits will be hauled by truck to a crusher and ore pass within close proximity to the Niumatang pit, which will connect to a rail haulage system that will haul the ore underground to the processing plant, a distance of approximately 8.4 kilometers ("km").

Open-pit mining is planned to use conventional mining methods, using hydraulic excavators and trucks for loading and haulage of ore and waste. The Tongqianshan open pit is a relatively small

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

open pit located at the southern section of the I-1 mineralized zone, where the ore zone is relatively steeply-dipping. The open-pit design was not based on a pit optimization analysis but was designed to meet the waste-to-ore strip ratio that ensured the pit's profitability and provided early production for the start up of the operation. In addition, the open pit met the project's need to provide sufficient waste rock to establish an operational work area at the base of the valley for surface infrastructure for the underground mine. The designed final pit contains approximately 3.7 Mt of ore and 20.8 Mt of waste at a strip ratio of 5.6:1 (waste:ore) by weight. Ore and waste rocks within the Tongqianshan pit are competent rocks, with no significant faulting or structures. The pit has been designed with an overall pit slope of 45°.

The design of the Niumatang open pit that contains the majority of the open-pit reserves was based on optimization work undertaken by the Changsha Institute and reviewed by BDASIA. Mine parameters used in the analysis were similar to, or slightly more conservative than, those used in the life-of-mine financial model. The selected shell from the pit optimization analysis was chosen to maximize profitability and minimize the strip ratio. The open-pit design followed the selected optimization shell, with the designed final pit containing approximately 19.9 Mt of ore and 146.2 Mt of waste at a strip ratio of 7.4:1 (waste:ore) by weight. The open-pit slope parameters for the design are similar to the Tongqianshan pit, with an overall open-pit slope angle of 45°. The maximum wall height within the pit is 570 m, and further geotechnical analysis on the final slope angles is justified.

The underground mine will be accessed via two inclined shafts and a decline ramp for trackless equipment. In planning the mine, the Changsha Institute divided the ore zone into the steeply-dipping (approximately 60°) section above the 4,550-m level and the flatter (dipping at an average of 10°) and relatively thick section below the 4,550-m level. The resource split within the two ore zones is approximately 20% and 80% respectively. The mining method planned for both the steeply-dipping and flatter, thick zones is open stope mining with variations based on access, stope dimensions, and sublevel intervals. Stopes within the flatter section are planned to be backfilled with classified tailings, with and without cement depending on the requirements for accessing ore adjacent to each stope. Trackless electric load-haul-dump ("LHD") units will be used to extract ore from the stopes and tipped to intermediate level rail haulage that will transport the ore to the main ore pass connecting to the main rail transport system to the processing plant. Trackless equipment will also be used for development, production drilling, and blasting, as well as for the provision of services.

The two mining methods described above account for around 90% of the ore reserves. For zones where open stoping mining methods are not appropriate due to ore dimensions, room-and-pillar or shrinkage stoping mining methods are planned depending on the thickness of the ore zone and the dip. Ground conditions are anticipated to be good within the skarn orebody, where the majority of underground development is planned; ground conditions for the mine infrastructure in the surrounding wall rocks are also expected to be good.

1.5 Processing

The Jiama processing facility will treat two types of ore: the copper-lead ore and the coppermolybdenum ore. A mixture of these two ore types will be treated during the initial 2 years of operation. After that period, only the copper-molybdenum ore will be processed. The processing capacity will be 6,000 tpd or 1.8 Mtpa for Phase I operation and 12,000 tpd or 3.6 Mtpa after the Phase II expansion, both based on 300 working days per year.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

It was reported by Huatailong that trial production for the Phase I concentrator started in July 2010, but adjustments have to be made to the plant which have delayed its commissioning. BDASIA was informed by Huatailong that commercial production of the Phase I plant started in September 2010 and the original ore production target for 2010 as presented in the production schedule of this report will be reduced by approximately 60% as the commission of the Phase I plant was delayed by several months due to longer than expected time to attune the machine, equipment and test run of the polymetallic flotation/separation method.

The Phase II 6,000-tpd mill was originally planned to be constructed in 2010 and become operational in early 2011 with a total 2.7 Mt of ore processed by the two processing plants in 2011. BDASIA was informed by Huatailong that construction of the Phase II plant will not start until December 2010. If the construction commences on time in December 2010 as currently planned, it is likely that the originally planned production targets for 2011 will be reduced by at least 10% due to the delayed starting of the Phase II plant construction.

Based on the Changsha Institute feasibility study, the ore processing rate is expected to be approximately 5,000 tpd from April 2010, 9,000 tpd from January 2011, and 12,000 tpd from January 2012. Ore processed in the first year will consist of ore mined from the Tongqianshan pit, stockpiled ore from pre-production stripping of the Tongqianshan pit, and pre-production stripped ore from the Niumatang pit.

The processing method and plant will be rather typical for such ores. After crushing to minus 12 millimeters ("mm") and grinding to 70% minus 0.074 mm, the ground ore is subjected to copper-lead-molybdenum bulk flotation. The obtained bulk concentrates are subjected to the separation of a lead concentrate and a bulk copper-molybdenum concentrate. Then the bulk copper-molybdenum concentrate is separated into copper and molybdenum concentrates. Consequently, individual copper, lead, and molybdenum concentrates will be produced in the initial 2 years of the Jiama mine life. No lead concentrate will be produced thereafter as the plants will treat only the copper-molybdenum ore. The concentrates will be dewatered and sold to the smelter buyers.

The laboratory test work indicated that the ores are relatively easy to treat and that satisfactory results can be obtained.

The final copper concentrate is expected to assay approximately 26% copper. Copper recovery is expected to be 90% when the average copper grade of the processed ore is above 0.8% and 85% when the copper ore grade is no more than 0.8%.

The final lead concentrate is expected to assay 60% lead at a lead recovery of 80% when the lead ore grade is at least 0.3%. No lead concentrate will be produced when the lead ore grade is less than 0.3%.

The final molybdenum concentrate is expected to assay 45% molybdenum at a molybdenum recovery of approximately 70% when the molybdenum ore grade is at least 0.011%.

Gold will only be recovered in copper concentrate, with an expected recovery of approximately 50%. The gold grade in the copper concentrates is expected to generally range from 5 g/t to 6 g/t.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Silver will be recovered in both the copper and lead concentrates. Silver recovery is expected to be 50% in the copper concentrate and 35% in the lead concentrate when both copper and lead concentrates are produced. Silver recovery is expected to be 80% in the copper concentrate when no lead concentrate is produced. The silver grade is expected to generally range between 300 g/t to 500 g/t in the copper concentrate and above 500 g/t in the lead concentrate.

duction	
Proc	

1.6

Forecast life-of-mine annual processed ore, processing recoveries, and concentrate production from 2010 through the end of mine life for the Jiama Project are summarized in Table 1.4.

	ma Project
	for the Jia
Table 1.4	Production
	Forecast]
	f-Mine

APPENDIX V-B

2025	3,600	3,600 0.83 0.033 0.36	0.30 17.7 0.18 0.07 1.21 1.21 1.21 1.25 63.59 63.59 6.45 2.37	90.0 50.0 80.0 70.0	103,287 26.0 6.27 493 26,855 26,855 50.87 1,876 1,876 1,876 844 844
2024	3,600	3,600 0.81 0.047 0.31	0.21 19.0 0.23 0.03 0.03 1.69 1.69 1.69 1.107 8.35 8.35 8.35 1.21	90.0 50.0 80.0 70.0	101,032 26.0 5.48 543 543 26,268 554 554 554 554 86 2,633 45.0 1,185
2023	3,600	3,600 0.85 0.046 0.33	0.11 0.11 0.07 0.07 0.07 0.07 1.66 1.174 61.35 3.96 51.35 2.47	90.0 50.0 80.0 70.0	106,154 26.0 5.53 462 27,600 587 49.08 2,584 45.0 1,163
2022	3,600	3,600 0.91 0.023 0.30	0.20 16.5 0.25 0.12 0.84 0.84 0.84 1076 59.36 8.83 8.83 8.83	90.0 50.0 80.0 70.0	1113,469 26.0 4.74 419 29,502 538 47.49 1,301 45.0 586
2021	$1,700 \\ 1,900$	3,600 0.97 0.021 0.44	0.44 17.4 0.01 0.04 0.76 1.577 0.76 0.48 0.48 0.48	90.0 50.0 80.0 70.0	121,335 26.0 6.50 412 31,547 788 50.04 1,176 45.0 529
2020	$1,800 \\ 1,800$	3,600 0.76 0.052 0.30	0.50 14.3 0.01 0.02 0.02 1.88 1.88 1.88 1.092 51.60 0.45 0.45 0.69	85.0 50.0 80.0 70.0	89,374 26.0 6.11 462 23,237 23,237 546 41.28 2,927 45.0 1,317
2019	1,800 1,800	3,600 1.03 0.044 0.044	$\begin{array}{c} 0.44\\ 21.7\\ 21.7\\ 0.04\\ 0.03\\ 37.01\\ 1.59\\ 1.59\\ 1.56\\ 1.59\\ 1.41\\ 1.41\\ 0.91\end{array}$	90.0 50.0 80.0 70.0	128,115 26.0 6.12 487 33,310 33,310 784 62.38 62.38 2,477 45.0 1,115
2018	$1,800 \\ 1,800$	$3,600 \\ 0.99 \\ 0.031 \\ 0.031 \\ 0.41$	$\begin{array}{c} 0.41\\ 19.4\\ 0.02\\ 0.02\\ 35.72\\ 1.12\\ 1.12\\ 1.12\\ 1.12\\ 0.89\\ 0.89\\ 0.84\end{array}$	90.0 50.0 80.0 70.0	123,648 26.0 5.97 452 32,148 32,148 738 55.95 1,747 1,747 45.0 786
2017	$1,800 \\ 1,800$	3,600 0.97 0.028 0.38	0.38 18.3 0.04 0.03 34.92 1.01 1.01 1.368 65.73 1.32 1.32 1.32	90.0 50.0 80.0 70.0	120,878 26.0 5.66 435 435 31,428 684 52.58 1,571 45.0 707
2016	$1,800 \\ 1,800$	3,600 0.98 0.032 0.38	0.58 17.2 0.07 0.05 35.30 1.15 1.15 1.15 1.381 62.07 2.54 1.68	90.0 50.0 80.0 70.0	122,198 26.0 5.65 406 31,771 691 49.65 1,796 45.0 808
2015	1,800 1,800	3,600 1.11 0.053 0.42	2.1.2 21.3 0.07 0.06 39.92 1.90 1.90 1.501 2.34 2.34 2.25	90.0 50.0 80.0 70.0	138,189 26.0 5.43 445 35,929 35,929 61.43 61.43 2,955 45.0 1,330
2014	1,909 1,691	$3,600 \\ 0.85 \\ 0.048 \\ 0.028$	$\begin{array}{c} 0.28\\ 16.1\\ 0.01\\ 0.02\\ 0.02\\ 30.54\\ 1.74\\ 1.74\\ 1.74\\ 1.74\\ 0.49\\ 0.49\\ 0.56\end{array}$	90.0 50.0 80.0 70.0	105,711 26.0 4.77 440 27,485 505 46.49 2,711 45.0 1,220
2013	2,700 900	3,600 0.95 0.043	00 17.5 0.03 0.02 0.02 1.57 1.57 1.57 0.80 0.80	90.0 50.0 80.0 70.0	117,931 26.0 5.30 427 30,662 625 50.32 2,436 45.0 1,096
2012	2,700 900	$3,600 \\ 1.10 \\ 0.051 \\ 0.040$	0.40 19.3 0.04 0.02 39.55 1.83 1.46 0.88 0.88	90.0 50.0 80.0 70.0	[36,917] 26.0 5.30 5.30 405 35,598 35,598 726 55.49 2,846 45.0 1,281
2011	2,700	2,700 0.96 0.040	0.59 19.1 0.20 0.05 0.05 25.84 1.08 1.08 1.08 51.61 5.35 51.61 5.35	90.0 50.0 70.0 80.0 35.0	89,444 1 26.0 5.83 289 5.83 289 23,255 23,255 23,255 1,684 45.0 758
2010	1,121	1,121 0.83 0.015 0.76	0.20 17.3 0.16 0.16 0.16 0.16 292 10.30 10.30 1.78	90.0 50.0 50.0 80.0 35.0	32,311 26.0 4.52 299 8,401 8,401 146 9.67 256 45.0 115
Item	Milled Ore Production from open pits (kt) from underground (kt)	production (kt)	average Au grade (g/t) average Ag grade (g/t) average Pb grade (%) average Zn grade (%) contained Cu metal (kt) contained Mo metal (kt) contained Au metal (kg) contained Ag metal (kt) contained Pb metal (kt) contained Pb metal (kt) contained Zn metal (kt) contained Zn metal (kt)	Milling Recovery (%) Cu to Cu concentrate Au to Cu concentrate Ag to Cu concentrate Mo to Mo concentrate Ag to Pb concentrate	Cu concentrate (t) Cu grade (%) Au grade (g/t) Ag grade (g/t) Contained Cu metal (t) Contained Au metal (kg) Mo concentrate (t) Mo grade (%) Contained Mo metal (t)
	$\frac{2010}{2011} \frac{2011}{2012} \frac{2013}{2013} \frac{2014}{2014} \frac{2015}{2015} \frac{2016}{2011} \frac{2018}{2019} \frac{2020}{2021} \frac{2022}{2023} \frac{2023}{2024} \frac{2024}{2025} \frac{2024}{2024} \frac{2025}{2024} \frac{2025}{2024$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

INDEPENDENT TECHNICAL REPORT FOR THE

APPENDIX	V-B
-----------------	-----

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Item	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Pb concentrate (t)	13,73560.04938,241 6.77	$7,130 \\ 60.0 \\ 2,534 \\ 4,278 \\ 18.06 \\ 18.06$														
Item	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	Total
Milled Ore Production from open pits (kt)																23,630
from underground (kt)	3,600	3,600	3,600	3,600	3,600 3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	2,700 2,700	1,500	81,591
average Cu grade (%)	0.91	0.71	0.71	0.71	0.71	0.75	0.71	0.70	0.63	0.80	0.77	0.82	0.66	0.70	0.47	0.83
average Mo grade $\binom{0}{(\alpha^{(k)})}$	0.022	0.033	0.036	0.031	0.025	0.030	0.036	0.054	0.065	0.032	0.038	0.028	0.041	0.062	0.092	0.039
average Ag grade (g/t)	19.5	14.6	15.7	15.5	17.4	18.9	14.1	14.4	12.5	17.0	14.9	15.1	8.8	8.3	9.6	16.5
average Pb grade (%)	0.10	0.06	0.03	0.05	0.04	0.10	0.06	0.04	0.06	0.16	0.02	0.07	0.02	0.02	0.01	0.08
average Zn grade (%)	0.03	0.03	0.02	0.03	0.05	0.09	0.06	0.03 75 20	0.06	0.12	0.03	0.07	0.02	0.02	0.01	0.05
contained Cu metal (kt)	0.78	1.17	1.30	1.11	0.89	1.08	1.29	1.95	2.35	1.14	27.04 1.36	1.01	1.47	10.70	1.38	41.17
contained Au metal (kg)	1,361	878	850	916	893	006	835	903	783	993	986	930	608	442	298	32,239
contained Ag metal (t)	70.26	52.63	56.57	55.83	62.51	68.19	50.61	51.87	45.00	61.12	53.62	54.34	31.64	22.46	14.33	1,731.84
contained Pb metal (kt)	3.49	2.18	1.15	1.77	1.59	3.61	2.06	1.29	2.05	5.90	0.87	2.38	0.80	0.44	0.08	85.32
contained Zn metal (kt)	0.96	1.17	0.76	1.06	1.81	3.13	2.22	0.99	2.23	4.25	1.03	2.37	0.68	0.43	0.16	47.73
Milling Recovery (%)																
Cu to Cu concentrate	90.0 50.0	80.03	0.03	0.03	0.03	0.08	0.03	0.03	80.0 60.03	80.03	0.03	90.0	0.03	0.03	0.03	
Ag to Cu concentrate	80.0 80.0	80.0 80.0	80.0 80.0	80.0 80.0	80.0 80.0	0.0c 80.0	80.0 80.0	80.0 80.0	80.0 80.0	80.0 80.0	0.0c 80.0	0.0c 80.0	80.0 80.0	80.0 80.0	0.0c 80.0	
Mo to Mo concentrate	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	
Pb to Pb concentrate																
Ag to Pb concentrate Concentrate Production																
Cu concentrate (t)	112,996	83,177	83,762	83,507 8	33,412 8	8,065 8	3,252 8	2,6867	3,834 9	3,878 9	0,3681	02,453	77,089 (51,3802	23,188 2,	973,039
Cu grade (%)	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0
Au grade $(g(t))$	6.02	5.28	5.07	5.49	5.35	5.11	5.02	5.46	5.30	5.29	5.46	4.54	3.94	3.60	6.42	5.42
Ag grade (g/t) Contained Cu metal (t)	79 379	21 626	040 1778	555 1717 172	600 01 687 3	619 28972	486 1 646 2	502 1 498 1	488 0 107 7	521 4 408 2	2/14 2/14	424 26.638 '	270 043	293	494 6 029	454 777 990
Contained Au metal (kg)	681	439	425	458	446	450	418	452	391	496	493	465	304	221	149	16,120
Contained Ag metal (t)	56.21	42.11	45.26	44.66	50.01	54.55	40.49	41.49	36.00	48.90	42.90	43.47	25.32	17.97	11.46	1,364.19

			JIANIA MIIN
Total	64,044 45.0 28,820 20,864 60.0 1,190 12,519 24.84	oject, the that year. ssioning. n will be e I plant ipping of nstructed ormed by r 2010 as tarting of are based are based are based are bround inne life.	/bdenum, ssed, and with the rally 4 to produced veries for
2040	2,142 45.0 964	ma Pro- sed in t commi oductica ductica str tion str tion	r, moly r proce ill vary in gene intrate g recov
2039	2,597 45.0 1,169	the Jia process /ed its /ed its ore pro- produc in med to med to the del the del the del the del the del the the ter, thi fer, thi fer, thi fer, thi fer, thi fer, the fer, th	coppe will be rate w contai conce conce
2038	2,289 45.0 $1,030$	of fore jot or of ore jot ore jot ore jot ore jot ore jot ore jot of the contract of the contract of the contract of the foreca.	cessed; m ore oncent ill also ypes of yzest pro
2037	1,578 45.0 710	dy rep. 21 Mt dy rep. 10 and 10 and origins in 201 in 20 in 201 in 201 i	be pro ybdenu I lead c uced w . The t
2036	2,120 45.0 954	lity stu ith 1.12 ade to 1 ade to 1 hber 20 1.4 bec kpiled ill was ill was ill was ill ants is plants is plants at leas the dat inhe dat inhe com poen p open p open p open p sess.	re will er-moly um, and te prod f silver 21.2. Th
2035	1,768 45.0 796	feasibi 010, w o be m Septerr Septerr Septer D-tpd m cessing cessing be reac ced by be reac ces in 1 atang atang natang ng proc	enum o ly copp ybdenu ncentra 0 g/t o Table 2
2034	3,657 45.0 1,646	stitute er of 2 tt had t tred in rted in nshan p nshan p nshan p or ted in vwo pro e const oe redu ve redu veresour resour e Nium e Nium	nolybde ced, onl er, mol per coi east 50 :tail in '
2033	3,038 45.0 1,367	gsha In I quart ant stat ant stat ant stat ant stat present present y the t y the t y the t i will t f th 0. If th 0. If th 1 will 2 final 2 er-grad er-grad tion sc	opper-n exhaust of copp the cop tin at l d in de
2032	2,011 45.0 905	Chang second second ise I pl ust rhe T ithe T ithe T ithe T in as t. The t. The t. The	and cc ill be (inage c opper, y conta resente
2031	1,681 45.0 756	r 2009 of the of the hu ac the Pha for 20 d from d from pi tang pi tang pi tang pi tang pi d rate 1 d rate 1 d rate 1 d rate 1 in the lativel	ad ore l ore w ual ton on to co enerall enerall s are pi
2030	1,392 45.0 626	cembe inning y 2010 y 2010 ion of 1 ion of 1 target e mine e mine e mine to or the or reduce ured ar reduce are dife f the re dopted dopted	pper-le er-leac he ann additio will g ontent
2029	1,727 45.0 777	the De he begg in July roducti roducti st of or m the 1 2.7 M t start t start produc cf 12,00 cf at a ming o the ming o the ming o	the copp e copp ced. T ced. In ced. In contrate netal c
2028	2,030 45.0 913	ed by on at th started rrcial p rrcial p l produ l produ ore fro ore fro ore fro one fro one fro one fro one fro one fro one fro anned the mi the mi s have	ture of atly, th produ plant fe plant fe s, and r s, and r s; and r
2027	1,821 45.0 819	evelop operation ntrator comme ar will ar with plant plant plant in plant vill be or the eco nedule ier vez factor	a mixt sequent will be in the J in the lead grades
2026	1,216 45.0 547	edule d o start o concer g that o first yo first yo first yo hase II hants w lants w lants w s to sch he earl he earl ng loss	ration, ed. Sult itrates grades lver. T , metal
Item	Mo concentrate (t)	Based on the production sch Phase I 6,000-tpd mill is expected to Actual trial production of the Phase I BDASIA was informed by Huatailon reduced by approximately 60% fror commissioning. Ore processed in the the Tongqianshan pit, and pre-produc in 2010 and become operational in es Huatailong that construction of the P currently planned, it is likely that the the Phase II plant construction. The f 2038; after that, the two processing p on the detailed production scheduling BDASIA. An attempt has been made stopes below the 4,550-m level in t Appropriate mining dilution and mini	During the first 2 years of opt and lead concentrates will be produc only copper and molybdenum concertypes of ore processed and the metal 6 g/t of gold and 300 to 500 g/t of si and their annual production tonnages each type of concentrate are based on

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

BDASIA considers that there is a degree of uncertainty for forecast production targets for the first two to three years of the mine life as the full production of the Phase I plant and the construction of the Phase II plant have been delayed for a number of months. Shortage in electricity supply for mine and mill production during the winter dry season could also cause some problems in achieving the stated production targets. Once the production capacity ramps up to the full designed production capacity and electricity supply to the project becomes sufficient, the long-term production targets are considered reasonable and achievable by BDASIA. Additional drilling for the Jiama deposit is very likely to convert a significant portion of the large inferred mineral resource to the measured and indicated categories, and the economic portion of the upgraded resource will become ore reserves, extending the mine life or justifying a higher production rate in the future.

1.7 Operating Costs and Capital Costs

The life-of-mine forecast operating costs for the Jiama Project are set out in Table 1.45. The operating costs have been estimated by the Changsha Institute and were presented in its December 2009 feasibility study report for the Jiama Project. BDASIA has reviewed these cost estimates and considers them to be reasonable. However, BDASIA has made an adjustment for contract mining costs for the Tongqianshan pit based on the current mining contract and for the underground mining cost.

Open-pit contract mining unit costs are forecast to be RMB16.4/t (US\$2.42/t) of ore and RMB13.2/t (US\$1.95/t) of waste for the Niumatang pit and RMB20.7/t (US\$3.05/t) for ore and RMB17.5/t (US\$2.58/t) for waste for the Tongqianshan pit. These contract mining costs are based on the current mining contracts that Huatailong has with the mining contractors. There is an additional open-pit management cost of RMB5.6/t (US\$0.83/t) in the period from 2011 to 2013, increasing up to RMB8.4/t (US\$1.24/t) at the completion of the Tongqianshan pit.

The underground mining unit cost is estimated to be RMB117.9/t (US\$17.39) for approximately the first 2.5 years of production as production capacity increases to the forecast rate of 1.8 Mtpa. Once this rate is achieved, the unit mining cost reduces to RMB98.2/t (US\$14.48/t) until production capacity increases from 1.8 Mtpa to 3.6 Mtpa, when the mining unit cost further reduces to RMB92.1/t (US\$13.58/t). The life-of-mine average unit underground mining cost is RMB94.5/t (US\$13.94/t). BDASIA has made a 15% positive adjustment over the unit underground mining cost estimated by the Changsha Institute as BDASIA considers that the Changsha Institute's estimate is not well defined and considers it prudent to make the adjustment to unit costs. BDASIA notes that the mine plan can be modified to absorb the increased costs, for instance by increasing sublevel intervals within the stopes and thereby reducing development requirements.

APPENDIX V-B				IND	EPEN	ND1	EN	T '	TEC	СН	NI	CA	L RI	EPC	DR] JI	F AM	OF A	R THE MINE	
ent, is 94.5/t ucted, nining		2025					92.1	5.1	57.2 60.6	30.7	196.9	29.04	36.6	233.5	34.44	19,003	2,803	22,535 3,324	
nageme RMB e condi ound n		2024					92.1	5.1	60.6	30.2	0.761	29.06	37.2	234.3	34.55	18,361	2,708	21,830 3,220	
ng mai cost of iould bi indergr		2023					92.1	5.1	9.09	101	1.04	29.19	37.2	235.1	34.68	17,969	2,650	21,350 3,149	
d mini uining sh ning sh tse of u		2022					92.1	5.1	60.6	101	40.4 198.2	29.23	37.2	235.4	34.72	18,888	2,786	22,436 3,309	
ing, an ound n and mi e increa		2021	16.4	$13.2 \\ 0.8$	6.8	33.1	95.9	5.1	60.6	101	172.1	25.38	46.3	218.4	32.21	40,294 15,260	2,251	19,367 2,857	
te min ndergro dergrou ion; tho		2020	16.4	$13.2 \\ 0.9$	8.3	36.6	98.2	5.1 7 F	9.09	25.7	168.3	24.83	48.1	216.4	31.92	100,00 17,007	2,508	21,864 3,225	
ig, was unit u and un operat	oject.	2019	16.4	13.2 1.5	8.3	44.6	98.2	5.1 76 F	60.6	ç	42.4 179.4	26.46	48.1	227.5	33.55	40,208 13,870	2,046	17,586 2,594	
e minir f-mine nining mining	ama Pı	2018	16.4	13.2 4.4	8.3	83.0	98.2	5.1	9.09	0.07	40.7	29.07	48.1	245.2	36.16	42,001 16,549	2,441	20,585 3,036	
ing ore tife-o en-pit ben-pit	the Ji	2017	16.4	13.2 6.7	8.3	113.4	98.2	5.1	60.11 60.6	101	40.1 211.6	31.21	48.1	259.7	38.30	41,200 18,453	2,722	22,645 3,340	
includ nan the o of opo f the op t.	osts for	2016	16.4	13.2 6.7	8.3	113.4	98.2	5.1	60.11 60.6	10 5	212.0	31.27	48.1	260.1	38.36	42,100 18,126	2,673	22,236 3,280	
g cost, igher tl he ratic trion, o rtion, o Projec	ting Co	2015	16.4	13.2 6.7	8.3	113.4	98.2	5.1	60.11 60.6	775	216.0	31.85	48.1	264.0	38.94	100,00 15,455	2,279	18,894 2,787	
Tat	Operat	2014	16.7	13.3 8.0	7.8	130.8	100.9	5.1	60.6	37.0	220.4	32.50	48.1	268.4	39.59	20,128	2,969	24,518 3,616	
pen-pit 2, whic 2, whic 2, whic 2, whic 2, whic 1, which 2,	recast	2013	17.9	13.4 5.9	5.5	102.8	117.9	5.1	0.111 60.6	30.7	2.4c 211.4	31.18	48.1	259.5	38.27	17,899	2,640	21,969 3,240	
total o sed ore hat opt ttio, i.e ing cos	ine Fo	2012	17.9	14.0 7.0	5.5	121.7	117.9	5.1 135 0	9.03 60.6	13 1	45.1 229.5	33.85	48.1	277.6	40.94	49,200 16,772	2,474	20,286 2,992	
te unit proces ieves t strip ra tal mini	e-of-M	2011	17.9	14.4 7.8	5.5	136.2		6.2	61.7	r 27	43.4 247.4	36.48	45.3	292.6	43.16	20,006	2,951	23,665 3,490	
-of-mir 2/t) of SIA bel ne high unit tol	Lif	2010	20.7	17.5 4.3	13.3	110.0		10.3	75.8	62.0	0.00 259.1	38.21	80.2	339.3	50.05	22,948	3,385	30,055 4,433	
Table 1.5 shows that the life forecast to be RMB97.8/t (US\$14.4 (US\$13.94/t) of processed ore. BDA/ which will result in the reduction of ti operation; and an overall reduction of		Item	Open-pit Contract Ore Mining (RMB/t of ore)	(RMB/t of waste)	Open-pit Management (RMB/t of ore)	(RMB/t of ore)	Underground Mining (RMB/t of ore)	Ore Transportation (RMB/t of ore)	Total Processing Cost (RMB/t of ore)	Total G&A and Other Cost	Total Operating Cost (RMB/t of ore)	Total Operating Cost (US\$/t of ore)	Deprectation and Amortization (RMB/t of ore)	RMB/t of Ore)	Total Production Cost (US\$/t of Ore)	CuEq in Concentrate Froduction (U) CuEq Operating Cost (RMB/t)	CuEq Operating Cost (US\$/t)	CuEq Total Production Cost (RMNB/t) CuEq Total Production Cost (US\$/t)	

	APPENDIX V-B	INDEPENDENT TECHNICAL REPO	RT FOR THE JIAMA MINE
Total	17.1 13.7 5.3 7.5 94.5 94.5 5.3 100.5 61.5	38.7 200.7 29.60 38.5 38.5 33.28 35.28 35.28 1,090,340 19,366 2,856 2,860 2,860 19,340 10,340 10,40000000000	forecast perating resource irst year
2040	113.9 9.8 73.7	36.9 234.44 31.7 31.7 2266.0 39.23 39.23 39.488 4,497 4,497 he vall her du her du or locoi	cost is Ill be o nd the n or the f
2039	104.2 6.2 80.8	39.1 230.3 33.97 33.97 33.25 33.87 33.87 33.88 24,976 3,684 4,215 4,215 4,215 4,215 4,215 are hig	is unit ants wi osts, ar cept fc
2038	92.1 5.1 97.2	34.1 191.9 28.30 25.0 25.0 31.99 31.99 3,529 3,529 3,529 3,529 3,529 3,529 3,989 and rel and rel	/t). Th. the pl. ation co
2037	92.1 5.1 60.6	38.5 196.3 25.0 25.0 25.0 25.13 32.64 35,152 35,152 35,152 3,343 3,343 be RM be RM ll be tr nsport intest	S\$8.94 e when nsporte cessed
2036	92.1 5.1 97.2	36.8 194.5 28.69 31.1 225.6 33.28 33.568 3,569 3,077 24,196 3,569 3,569 3,569 3,569 3,569 3,569 3,569 3,569 3,569 3,569 3,569 3,568 3,569 3,568 3,568 3,568 3,569 3,569 3,568 3,568 3,569	.6/t (US ine life and trai of pro
2035	92.1 5.1 97.2	37.2 195.0 28.76 31.1 33.34 33.34 33.862 3,862 3,657 3,657 3,545 3,545 3,545 3,545 3,545 14,033 2,545 3,545 14,033 2,545 14,033 2,647 2,647	MB60. f the m e sale <i>i</i> 6.56/t)
2034	92.1 5.1 97.2	34.8 192.5 28.40 31.1 223.6 32.98 32.98 3,687 3,128 3,128 3,128 3,128 3,633 3,633 3,633 3,633 1,206 3,128 3,637 3,637 1,206 2,1,206 3,128 3,687 3,687 3,687 3,1283,128 3,	o be R /ears o centrate t (US\$
2033	92.1 5.1 97.2	36.0 193.8 28.58 31.3 31.3 33.20 33,835 3,641 3,041 3,041 3,533 3,533 3,533 3,533 3,533 3,533 3,533 3,533 3,533 3,533 3,533 3,533 3,610 10 10 10 10 10 10 10 10 10 10 10 10 1	nated 1 last 2 y ne cone B44.5/
2032	92.1 5.1 97.2	35.3 193.1 28.48 31.3 31.3 31.0 33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.10 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.844 33.845 33.844 33.845 33.844 33.845 33.844 33.845 33.844 33.845 33.845 33.845 33.845 33.845 33.845 33.845 33.845 33.845 33.845 33.856 33.856 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.857 33.8	is estii ng the tble. costs, tl to RM to RM
2031	92.1 5.1 60.6	36.1 193.9 28.60 21.3 31.3 33.22 33.24 33.24 33.19 33.19 35,148 3,709 3,709 3,709 3,709 3,709 3,709	eration as durii reasons rative c 5.03/t) B38.7//
2030	92.1 5.1 60.6	35.0 192.8 28.43 32.8 32.8 33.27 33.27 33.14 3,414 3,414 3,414 3,414 3,995 3,995 3,995 3,995	full opo s well s to be liminist t (US\$: re RM
2029	92.1 5.1 60.6	35.2 193.0 28.46 32.8 33.30 30,673 33.30 30,673 3,341 3,341 3,341 3,341 3,908 3,908 3,908 3,908 3,908 3,908 3,908	are in years a timates timates the ad the ad B34.1/i
2028	92.1 5.1 97.2	35.5 193.2 28.50 32.8 31,467 33.34 31,467 33.34 3,361 3,261 3,261 3,261 3,261 3,261 3,261 10 22,108 3,261 3,261 3,261 3,261 3,261 3,261 3,261 3,261 3,261 3,261 3,26 3,261 3,261 3,26 3,261 3,26 3,261 3,26 3,261 3,26 3,26 3,26 3,26 3,26 3,26 3,26 3,26	plants itial 2 cost es nclude m RM l other
2027	92.1 5.1 97.2	35.2 192.9 28.46 32.8 33.29 30,625 3,345 3,345 3,914 3,914 3,914 52,681 3,914 3,914 cost fi cost fi	then the international tension of the international services of the tension of tens
2026	92.1 5.1 97.2	40.5 198.3 29.24 32.8 33.450 34.08 38.450 38.450 3.191 3.191 an unit mmissi is curre osts inc	sost where the second in the process of the process of the process of the second of th
Item	Open-pit Contract Ore Mining (RMB/t of ore) ore) Open-pit Contract Waste Mining (RMB/t of waste) Open-pit strip ratio open-pit strip ratio Open-pit strip ratio Open-pit Mining (RMB/t of ore) Open-pit Mining (RMB/t of ore) Open-pit Mining (RMB/t of ore) Ore Transportation (RMB/t of ore) Total Drocessing Cost (RMB/t of ore)	An additional operating Cost (RMB/t of ore) (RMB/t of ore) Total Operating Cost (US\$/t of ore) Depreciation and Amortization (RMB/t of ore) (RMB/t) (RMB/t) (RMB/t) (RMB/t) (RMB/t) (RMB/t) (RMB/t) (REq in Concentrate Production (t) (Req Operating Cost (US\$/t) (RMB/t) (Req Operating Cost (US\$/t) (Req Total Production Cost (US\$/t) (Red Total Production Cost (Red Total Product	The long-term processing unit to be slightly higher for the ramp up p at a reduced rate. BDASIA considers th The unit G&A and other costs compensation levy at 2% of the profit of operation. The life-of-mine average

APPENDIX V-B INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

The total unit operating cost ranges from RMB168.3/t (US\$24.82/t) to RMB234.4/t (US\$34.57), with a life-of-mine average of RMB200.7/t (US\$29.60/t). The total unit production cost, which consists of total unit operating cost and unit depreciation and amortization costs, ranges from RMB216.9/t (US\$31.99/t) of processed ore to RMB339.3/t (US\$50.04/t), with a life-of-mine average of RMB239.2 (US\$35.28/t).

BDASIA has calculated a copper-equivalent ("CuEq") production in concentrate for the Jiama Project based on the metal in concentrate sale prices (without VAT) as listed in Table 1.8, using the following formula:

 $CuEq (t) = Cu (t) + Mo (t) \times 256,410.26/42,115.39 + Pb (t) \times 10,683.76/42,115.39$ $+ Au (g) \times 166/42,115.39 + Ag (kg) \times 2,318.38/42,115.39$

Unit CuEq operating cost and unit CuEq total production have also been calculated and presented in Table 1.5.

BDASIA would note that no inflation factor has been built into the operating cost estimates for the Jiama Project.

Table 1.6 shows the Changsha Institute's initial capital investment estimates for the 12,000 tpd Jiama Project in its December 2009 feasibility study. The capital cost estimates cover the pre-production stripping for the two open-pit mining areas, underground development, and construction of the ore transportation system, as well as Phase I and Phase II processing plants with a production rate of 6,000 tpd each, infrastructure, administration and supporting facilities, land acquisition, and other capital expenditures, and a 10% contingency for all of the estimated capital expenditures.

Item	Development	Construction	Equipment	Engineering & Installation	Other	Total	Percentage
Geology and Construction							
Exploration (RMB $\times 10^3$)		16,041	2,067			18,108	0.68%
Open-pit Pre-production							
stripping (RMB×10 ³)							
Tongqianshan Pit							
$(RMB \times 10^3) \ldots \ldots$	89,111					89,111	
Niumatang Pit							
$(RMB \times 10^3) \ldots \ldots$	502,770					502,770	
Subtotal (RMB×10 ³)	591,881					591,881	22.21%
Underground Development							
$(RMB \times 10^3) \ldots \ldots \ldots$	205,505	6,156	180,797	22,822		415,280	15.58%
Ore Transportation System							
$(RMB \times 10^3) \ldots \ldots \ldots$	99,316	20,778	35,181	27,242		182,517	6.85%
Concentrating Plant and TSF							
$(RMB \times 10^3)$		249,042	297,522	48,524		595,088	22.33%
Infrastructures (RMB×10 ³)		163,563	72,925	63,170		299,658	11.24%
Administration and Supporting							
Facilities (RMB×10 ³)		19,472	4,077	1,600		25,149	0.94%
Land Acquisition and Other							
Costs (RMB×10 ³)					295,184	295,184	11.08%
Contingency (RMB×10 ³)					242,286	242,286	9.09%
Total (RMB×10 ³)	896,702	475,052	592,569 87 400	163,358	537,470	2,665,151	100.00%
10tal (05\$^10°)	134,437	/0,00/	07,400	47,074	13,413	373,070	100.00 /0

 Table 1.6

 Initial Capital Cost Estimates for the 12,000 tpd Production Capacity of the Jiama Project

ress, the close to enditures oduction ng plant. ding the in 2022, it capital dered by		e for the /o stages		2024				Total	4,139,146	610,493	0 0
ion prog bital expe intal expe processin (ty, inclu 40.7 M) placemer is consi		st estimat wilt in tw		2023				2040	107,500	-15,855	-59,394 -8,760
onstruct A), whicl 2009 car ly for th hase II d capaci M (US\$ M (US\$ amount amount		ipital cos will be b		2022				2039	·		-44,152 -6,512
soliect c \$218.3 N 08 and 2 08 and 2 re mostl of the P hergroun MB276 1 r Project. general		e total ca nts that		2021	561,087	82,756		2038			-25,974 -3,831
n the p M (USS The 20 futures a uction ind unc s of RM s of RM out the		ole. The ated pla		2020	233,550	34,447		2037			
apital expenditures for the Jiama Project. Based or es in 2008 and 2009 were approximately RMB1,480 l 9 based on information available from Huatailong. pital cost estimates. The remaining capital expendin and equipping of the underground mine, and constr S\$76.5 M) in 2021 and 2022 will be used to expa the 4,550-m level. Replacement capital expenditures US\$62.1 M) in 2032 have also been estimated for the ather than being two distinct amounts as forecast, b	coject was estimated at RMB129.5 M (US\$19.1 M).	ttes for the Jiama Project are reasonable and achievab high due to the construction of two physically separa	Table 1.7 ine Forecast Capital Costs for the Jiama Project	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 237,151	5 82,176	7 55,347 21,536 1 8,163 3,176	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	420,885	62,077	
ecast c enditur and 200 itial ca pment a pment a bove above above ration 1	liama P	t estima 8 M) is ity.	fe-of-M	2010	628,000	92,62:	52,63′ 7,76⁄	2027			
uine for otal exp total in develoj RMB51 tre zone the ope	for the J	ital cos US\$87. er facil	Lii	2009	823,000	121,386		2026			
life-of-m hat the t litures ir of the pen pit, ates of F tapping o 2026, and cears of	equired	tt the cap 595 M (one larg		2008	657,000	96,903		2025	365,973	53,978	
Table 1.7 shows the Changsha Institute estimated t the actual total capital expend represent approximately 56% stripping of the Niumatang o Additional capital cost estim development of the steeply-di RMB366 M (US\$54.0 M) in 2 may be spread over several y BDASIA to be reasonable.	Total working capital r	BDASIA considers tha two processing plants of RMB at the available site, instead of		Item	Total Capital Expenditures (RMB×10 ³)	(US\$×10 ³)	Working Capital (RMB×10 ³)	Item	Total Capital Expenditures (RMB×10 ³)	(USS×10 ³)	Working Capital (RMB×10 ³)

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

1.8 Project Economics

Metal prices used for the base case economic analysis of the Jiama Project in the Changsha Institute's December 2009 feasibility study report are listed in Table 1.8. A VAT of 17% is applied to all metal sales except for gold in China. Commonly, a concentrate producer in China sells its concentrate production to the smelter customers. Sale prices for metals in concentrate are discounted by a certain percentage from the metal sale prices based on the smelter's concentrate treatment costs and the prevailing metal market prices in China. The discount factors (if applicable) taken by the Changsha Institute in Table 1.8 represent the conditions set out in the preliminary copper concentrate sales contract discussed in Section 21.3 or the current industry averages in China. The copper, molybdenum, and lead prices selected by the Changsha Institute represent the actual average metal market prices for the last 3 to 5 years in China. Gold and silver prices selected by the Changsha Institute are slightly higher than the past 3-year actual averages, but they represent the Changsha Institute's expectation for the long-term prices for these two metals. BDASIA accepts these metal price selections and has used the same metal prices in the base case economic analysis of the Jiama Project in this ITR. The prices for metals in concentrate without VAT are used in the following economic analysis. In addition to the metal prices in Table 1.8, a copper concentrate transportation credit of RMB200/t (US\$29.50/t) of copper metal contained in the copper concentrate will be applied based on the current preliminary sales contract with the copper concentrate buyer.

 Table 1.8

 Metal Prices Used for Base Case Economic Analysis for the Jiama Project

	Metal with	VAT Price ⁽¹⁾	Metal in Conc VAT	centrate with Price	Metal in Conce VAT	ntrate without Price
Metal	RMB	US\$	RMB	US\$	RMB	US\$
Copper	55,000/t	8,112.09/t	49,275/t ⁽²⁾	7,267.70/t	42,115.39/t	6,211.71/t
Molybdenum			300,000/t	44,247.79/t	256,410.26/t	37,818.62/t
Gold	200/g	917.51/oz	166/g	761.53/oz	166/g	761.53/oz
Silver	3,500/kg	16.06/oz	2,712.5/kg	12.44/oz	2,318.38/kg	10.64/oz
Lead			12,500/t	1,843.66/t	10,683.76/t	1,575.78/t

Notes:

(1) VAT is 17% for all metals except gold; gold sales are not subject to VAT.

(2) Cu price in copper concentrate includes a grade bonus of RMB600/t based on the concentrate sales contract as the copper concentrate to be produced by Jiama is expected to have an average Cu grade of 26%, which is 6% higher than the base Cu grade of 20%.

APPENI	DIX V-	B				INDI	EPF	ENI	DEI	NT	TF		HN	VIC	[A]	LR	EP	0] [0	RT JIA	FO MA	R N	TH 111	IE NE
s ITR in the		2025	26,855	648	50.87 844			1,131		10/	118	č	216				1.573		232	18		5	1,560
d in thi e used j		2024	26,268	554	54.86 1.185	x		1,106	Ċ	76	127		304				1.629		240	19		5	1,615
iscusse unt rate NPV.		2023	27,600	587	49.08 1.163	×		1,162	t	16	114		298				1.672		247	20		9	1,657
eters d e disco ing the		2022	29,502	538	47.49 586			1,242	0	89	110	c L	150				1.592		235	19		9	1,579
c param e as the alculati		2021	31,547	788	50.04 529			1,329	- - -	161	116	ç	136				1.711		252	21		9	1,697
onomic le same sed in c		2020	23,237	546	41.28 1.317	x		679	5	16	96		338				1.503		222	18		5	1,489
and ec ch is th was us	t	2019	33,310	784	62.38 1.115	x		1,403		150	145		286				1.963		290	25		7	1,946
chnical n, whic nethod	Projec	2018	32,148	738	55.95 786			1,354	c c	621	130		202				1.808		267	21		9	1,793
the tec culation count n	Jiama	2017	31,428	684	52.58 707			1,324	- - -	114	122	č	181				1.740		257	19		9	1,728
t using V") cal /ear dis	for the	2016	31,771	691	49.65 808			1,338	ι - -	CII	115		207				1.775		262	20		9	1,762
I Projec (''NP' of the y	ble 1.9 alysis f	2015	35,929	750	61.43 1.330	x		1,513		C71	142	č	341				2.121		313	25		L	2,103
e Jiama it value niddle	Ta nic An	2014	27,485	505	46.49 1.220	x		1,158	6	8 4	108		313				1.662		245	18		5	1,650
s for th preser t. The 1	Econol	2013	30,662	625	50.32 1.096	x		1,291	10	104	117	č	281				1.793		264	20		9	1,779
analysis the net Projec	e Case	2012	35,598	726	55.49 1.281	×.		1,499	00	170	129		328				2.077		306	23		7	2,060
nomic a ed for e Jiama	Base	2011	23,255	522	25.81 758	4,278 18.06		679	t	8/	60		194	46		41	1.407		208	14		5	1,398
use ecol was us r for the		2010	. 8,401	. 146	. 9.67 . 115	. 8,241 . 6.77		. 354	č	. 24	. 22	e e	. 30	. 88		. 15	533		. 79	9		. 2	. 529
BDASIA conducted a base ca (Table 1.9). A discount rate of 9% Changsha Insititute's feasibility study		Item	Metal Production Cu Production in Cu Concentrate (t)	Au Froduction In Cu Concentrate (kg)	Ag Production in Cu Concentrate (t) Mo Production in Mo Concentrate (t)	Pb Production in Pb Concentrate (t) Ag Production in Pb Concentrate (t)	Metal Sales Income Cul Production in Cultonneutrate	(RMB M)	Au Production in Cu Concentrate	Ag Production in Cu Concentrate	(RMB M)	Mo Production in Mo Concentrate	(RMB M) Dh Droduction in Dh Concentrate	(RMB M)	Ag Production in Pb Concentrate	(RMB M)	(RMB M)	Total Sales Revenue	(US\$ M)	Sales 1ax 10% of VA1 (RMB M)	Cu Concentrate Transportation Credit	(RMB M) ⁽¹⁾	Income atter Sales 1 ax (RMB M)

	AP	P	EN	ND	IX	V-	B							ľ	ND) E	PI	EN	[D]	EN	T	T	'E	CI	HN	I	CA	L]	RE	2P	0	R' JI	T A	F M	OF A	R 1 M	TH IN	E E
2025		350	218		141	709	105		132		54	665	100	566	366							331	49	15.5	.2630	87	12.9											
2024		350	218		141	709	105		134		54	718	108	610								744	110	14.5	0.2866 (213	31.5		es contract									
2023		350	218		144	712	105		134		54	757	114	643								777	115	13.5	0.3124 (243	35.8		ninary sale									
2022		350	218		145	713	105		134		54	678	102	576								710	105	12.5	0.3405	242	35.7		ent prelim									
2021		257	218		144	619	91		167		54	857	129	728	561							334	49	11.5	0.3712	124	18.3		on the curr	ct.	;							
2020		261	218		127	606	89		173		54	656	98	558	234							497	73	10.5	0.4046	201	29.7		er based c	ama Proje	0							
2019		275	218		152	646	95		173		54	1,073	161	912								1,085	160	9.5	0.4410	478	70.6		ntrate buy	for the Ji								
2018		344	218		147	710	105		173		54	857	128	728								901	133	8.5	0.4807	433	63.9		per conce	osing cost	0							
2017		399	218		145	762	112		173		54	739	111	628								801	118	7.5	0.5240	420	61.9		y the cop	1 as the cl								
2016		399	218		146	763	113		173		54	772	116	656								829	122	6.5	0.5711	473	69.8		provided b	ich is used								
2015		399	218		160	777	115		173		54	1,099	165	934				7				1,100	162	5.2	0.6225	685	101.0		ntrate is p	ASIA, wh								
2014		439	218		136	793	117		173		54	629	94	535				7				701	103	4.5	0.6785	476	70.2		l in conce	is by BD/								
2013		402	218		141	761	112		173		54	791	119	672				7				839	124	3.5	0.7396	620	91.5		pper meta	nic analys								
2012		453	218		155	826	122		173		54	1007	151	856		22		7				1001	148	2.5	0.8062	807	119.0		50/t) of co	he econon								
2011		385	167		117	668	66		122		41	567	85	482	557	55		7	30			15	7	1.5	0.8787	13	1.9		(US\$29.5	added to t								
2010		135	85		71	290	43		90		17	132	20	112	628	53		7	58			-422	-62	0.5	0.9578	-404	-59.6		tMB200/t	(M) was	(
	Operating Cost	Mining Cost (RMB M)	Processing Cost (RMB M)	G&A and Other Cost	(RMB M)	(RMB M)	Total Operating Costs (US\$ M)	Depreciation and Amortization	(RMB M)	Resource Tax @RMB15/t of ore	(RMB M)	Taxable Income (RMB M)	Income Tax $@15\%$ (RMB M) $\dots \dots$	After Tax Income (RMB M)	Total Capital Costs (RMB M)	Working Capital (RMB M)	Environmental Bond/Closing Costs	(RMB M) ⁽²⁾	VAT Refund (RMB M)	Fixed Asset Remnant Value (RMB	M)	After Tax Cash Flow (RMB M)	After Tax Cash Flow (US\$ M)	Years to Discount at End of 2009	Discount Factor @9%	Discounted Cash Flow (RMB M)	Discounted Cash Flow (US\$ M)	Notes:	(1) A copper concentrate transportation credit of R	(2) An environmental bond of RMB35 M (US\$5.2								

V-B-24

APPENDIX V	V-B
-------------------	------------

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Table 1.9 Base Case Economic Analysis for the Jiama Project (continued)	2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 Total	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$		te 	$ \begin{array}{c} ({\rm RMBM}) \ldots \\ \circ ({\rm RMBM}) \ldots \\ \circ ({\rm RMBM}) \ldots \\ 1,621 \ 1,291 \ 1,327 \ 1,293 \ 1,264 \ 1,359 \ 1,307 \ 1,427 \ 1,379 \ 1,428 \ 1,415 \ 1,482 \ 1,217 \ 1,050 \ 552 \ 45,973 \\ \ldots \ldots \ldots \ldots 239 \ 190 \ 196 \ 191 \ 186 \ 201 \ 193 \ 210 \ 203 \ 211 \ 209 \ 219 \ 180 \ 155 \ 81 \ 6,781 \\ \ldots \ldots \ldots \ldots \ldots \ldots 19 \ 14 \ 15 \ 14 \ 14 \ 15 \ 14 \ 16 \ 16 \ 16 \ 16 \ 16 \ 17 \ 13 \ 11 \ 6 \ 520 \\ \ldots \ldots \ldots \ldots \ldots 1,608 \ 1,282 \ 1,317 \ 1,284 \ 1,255 \ 1,349 \ 1,297 \ 1,415 \ 1,367 \ 1,416 \ 1,404 \ 1,470 \ 1,208 \ 1,042 \ 548 \ 4 \ 556 \ 6 \ 520 \ 552 \ 45,607 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Table Case Economic Analysis for	026 2027 2028 2029 2030	,379 21,626 21,778 21,712 21,68 681 439 425 458 444 6.21 42.11 45.26 44.66 50.0 547 819 913 777 620	,237 911 917 914 91	113 73 71 76 74 130 98 105 104 110	140 210 234 199 16	,621 1,291 1,327 1,293 1,26. 239 190 196 191 180 19 14 15 14 16 19 14 15 14 16 60 4 4 4 6 ,608 1,282 1,317 1,284 1,254	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Base (Item 20	Metal Production Cu Production in Cu Concentrate (t) Au Production in Cu Concentrate (kg) Ag Production in Cu Concentrate (t) Mo Production in Mo Concentrate (t) Pb Production in Pb Concentrate (t) Ag Production in Pb Concentrate (t)	Metal Sales Income Cu Production in Cu Concentrate (RMB M)	(RMB M)	Mo Production in Mo Concentrate (RMB M)	Pb Production in Pb Concentrate (KMB M) Ag Production in Pb Concentrate (KMB M) Total Sales Revenue (RMB M)	Mining Cost (RMB M) Processing Cost (RMB M) G&A and Other Cost (RMB M) G&A and Other Cost (RMB M) Total Operating Costs (USS M) Depreciation and Amortization (RMB M) Resource Tax @RMB M) Parable Income (RMB M) Income Tax @15% (RMB M) After Tax Income (RMB M) Costs (RMB M) Provincental Rond/Closing Capital (RMB M)

V-B-26

INDEPENDENT TECHNICAL REPORT FOR THE

APPENDIX V-B

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

The community has, in general, welcomed the opportunity for employment and other cash streams introduced into the area as a result of the mine development and has participated in ongoing dialogue with both Huatailong and the local government concerning the development and operation of the mine, potential environmental impacts and their management, and the scope and nature of community benefits to be generated by the development. Over RMB 50 M (US\$ 7.4 M) has been expended to date by Huatailong through the implementation of its community development plan.

Huatailong has already employed approximately 26,000 days of contracted local labor at a cost of around RMB20 M (US\$2.9 M) and intends to employ some 125 local people in the workforce.

Huatailong seeks to conduct its operations in accordance with the national safety standards and has a health and safety management system in place.

1.10 Conclusions and Recommendation

The Jiama deposit is a large copper-polymetallic deposit with well-defined mineral resources and ore reserves. The currently defined ore reserve for the deposit is sufficient to support a production at a rate of 12,000 tpd or 3.6 Mtpa for approximately 30 years. In addition, there is a large defined inferred resource, and the additional exploration potential is also very good. The currently defined mineral resources and ore reserves will very likely be increased in the future by additional exploration work.

The extraction of the I-1 mineralized body, the primary mineralized body in the Jiama deposit, requires the use of both open-pit and underground mining methods. BDASIA considers the mine design generally appropriate. However, there is a degree of uncertainty with the production targets during the ramp-up period; and further detailed planning, optimization, and detailed geotechnical assessment would assist in reducing overall risk of the mine plan. The schedule is susceptible to interruptions of the supply of power. The economics of the two open pits are not optimum, but project goals such as early production and the need for waste as a platform for the underground mine access development, justify the selection of the pit size, particularly the Tongqianshan pit.

Both the copper-lead ore and copper-molybdenum ore appear to be fairly typical and relatively simple to treat. It is expected that the concentrates of copper, lead and, molybdenum could be produced as indicated by the testwork and outlined in the life-of-mine production forecast (Table 1.4).

To ensure uninterrupted production, two aspects specific to this operation should be given a high degree of attention. They involve process water and movement of the tails from the plant to the final tailings disposal site:

- Fresh water is scarce in the area, and the process water will have to be recovered, treated, and recycled.
- The thickened tails will have to be pumped from the thickeners at a MSL elevation of around 3,980 m to a filtering facility at a 4,380-m MSL elevation, the water returned to process, and the filtered cake (tailings) transported by a conveyor belt and deposited in the final tailings disposal site. Any malfunction of this system will cause the shutdown of the plant and loss of production.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

The following are BDASIA's recommendations for the Jiama Project:

Exploration

Further in-fill drilling and step-out drilling are likely to significantly increase the currently defined mineral resources and ore reserves for the Jiama Project. BDASIA, however, does not consider additional drilling a high priority task at the current stage of project development as the defined ore reserves are sufficient to support the mining operation for approximately 30 years at the planned production rate of 12,000 tpd or 3.6 Mtpa. If mining operations over the next several years prove to be successful, Huatailong should consider increasing the currently planned production capacity of the project, and additional drilling to increase the mineral resources and ore reserves of the project may become necessary. Cost for the additional drilling could range from less than RMB5 M (US\$0.74 M) to more than RMB20 M (US\$2.9 M).

Open-pit Mining

Preliminary assessment of slope stability has been carried out on both the Tongqianshan and Niumatang pits, and it is recommended that a more detailed geotechnical assessment be carried out on the pit walls, particularly for the larger Niumatang open pit to better define the appropriate slope angle for the various walls of the pit.

Within the planned Tongqianshan open pit, there has been some localized extraction of ore by previous underground mining. The Changsha Institute has noted that these mining areas can create a risk to the open-pit mining operation and recommended that the Jiama Project take measures to protect the open-pit operation with procedures to identify these voids within the mining area as the open pit progresses.

The optimization analysis for the Niumatang pit did not consider the marginal cost of mining the ore zones within the open pit by underground mining. The overall open-pit unit mining costs for the Niumatang pit are higher than those for the underground mine. BDASIA recommends that further optimization of the mine plan be carried out to maximize the profitability of ore extraction by better defining the boundary between the open-pit and underground mining methods.

Underground Mining

Given the quality of the orebody and adjacent rocks, BDASIA recommends that the stope dimensions within the zone below the 4,550-m level be geotechnically reviewed to determine if stope sizes can be increased without significantly affecting the production risk. Overall, BDASIA considers that further optimization of the mine design is warranted and has the potential to improve the profitability of the underground mine.

The recommendations mode for both the open-pit mining and underground mining should generally be considered as part of routine technical work for the mining operation, and should not cost the project significantly more money. The optimizations discussed are very likely to result in some cost savings for the project.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Processing

Additional testwork aimed to design and confirm the process water treatment — its recycling and effect on concentrate grades and recoveries — is strongly recommended. The tests should be conducted on samples representing the mill feed for years 1, 2, 3, and 4 if at all possible. The final, locked-cycle tests should be carried out in duplicate. The cost for the additional test work can be ranged from RMB0.4 M (US\$0.059 M) to RMB1.5 M (US\$0.22 M).

2.0 INTRODUCTION

China Gold International is a Canadian mining company whose shares are listed on the TSX with a trading symbol CGG. China Gold Group HK currently owns approximately 39% of the listed shares of the Company and is the largest shareholder.

The Company proposes to prepare a prospectus to be issued in support of an IPO for a listing on the main board of the SEHK and to raise capital for exploration, project development, and acquisition. Citigroup Global Markets Asia Limited ("Citi") is the Company's sponsor for the IPO.

The Jiama Project currently under construction in Metrorkongka County, Tibet Autonomous Region, China, will be injected into China Gold International during the IPO process. The Jiama Project is currently owned and operated by Huatailong, which is wholly owned by a JV company between China Gold Group HK (51%) and Rapid Result (49%), a company registered in the British Virgin Islands ("BVI").

The Company engaged BDASIA, a wholly owned subsidiary of Behre Dolbear & Company, Inc. ("Behre Dolbear"), as their independent technical adviser to undertake an independent technical review of the Jiama Project and to prepare an ITR in connection with the Company's IPO on the SEHK. This BDASIA ITR is intended to be included in the Company's IPO prospectus and in the Company's information circular for shareholder approval of the Jiama transaction. This ITR will also be filed as a technical report in Canada pursuant to applicable securities reporting requirements.

This ITR has been prepared in accordance with the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited (the "Listing Rules"). Mineral resources and ore reserves of the Jiama Project have been reviewed in accordance with the Australasian JORC Code. As China Gold International is a public company listed on the TSX in Canada, mineral resources and ore reserves reported under the Australasian JORC Code have also been reconciled with mineral resources and mineral reserves under the CIM Standards. The report format follows the reporting requirements under Canadian NI 43-101.

BDASIA's project team for this technical review consists of senior-level professionals from Behre Dolbear's offices in Denver, Colorado in the United States, Sydney in Australia, and London in the United Kingdom. Behre Dolbear personnel contributing to the study and to this ITR include:

• Dr. Qingping Deng (B.S., M.S., and Ph.D.), a senior associate and former president of BDASIA, was BDASIA's Project Manager and Project Geologist for this technical review. Dr. Deng is a geologist with more than 26 years of professional experience in the areas of exploration, deposit modeling and mine planning, estimation of mineral resources and ore reserves, geostatistics, cash-flow analysis, project evaluation/valuation, and

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

feasibility studies in North, Central and South America, Asia, Australia, Europe, and Africa. Dr. Deng is a Certified Professional Geologist with the American Institute of Professional Geologists, a Qualified Professional Member of Mining and Metallurgical Society of America, and a Registered Member of The Society of Mining, Metallurgy, Exploration, Inc. ("SME") and meets all the requirements for "Competent Person" as defined in the 2004 Australasian JORC Code and all the requirements for "Qualified Person" as defined in Canadian NI 43-101. In recent years, he has managed a number of ITR studies for filling with SEHK and other securities exchanges. Dr. Deng is fluent in both English and Chinese. He was the president and chairman of the board of directors of BDASIA before June 30, 2010.

- Mr. Peter Ingham (B.S. and M.S.), general manager mining of Behre Dolbear's Sydney office, was BDASIA's Project Mining Engineer for this review. Mr. Ingham has over 30 years of professional experience in the mining industry in Europe, Africa, Australia, and Asia. His experience includes operational expertise in operations management, mining contract management, project assessment and acquisition, operational audits and trouble-shooting, and tenement and title issues. He is experienced in a range of commodities, primarily copper, gold, and platinum, in both surface and underground mining. Mr. Ingham is a Fellow of the Australasian Institute of Mining and Metallurgy and a Member of Institute of Materials, Minerals and Mining. He meets all the requirements for "Qualified Person" as defined in Canadian NI 43-101.
- Mr. Vuko Lepetic (B.S. and M.S.), a senior associate of Behre Dolbear's London office, was BDASIA's Project Metallurgist. Mr. Lepetic has over 30 years of worldwide experience in mineral processing and metallurgy. He has worked with and has extensive knowledge of processes employed and products produced by Huatailong. Mr. Lepetic holds patents for stibnite and cassiterite flotation (both industrially employed), as well as records of invention for the processing of iron, lead, and zinc oxide minerals, rare earths, and phosphates. Mr. Lepetic is a Qualified Professional Member of the Mining and Metallurgical Society of America and meets all the requirements for "Qualified Person" as defined in Canadian NI 43-101.
- Ms. Janet Epps (B.S. and M.S.), a senior associate of Behre Dolbear's Sydney, Australia office, was BDASIA's Project Environmental and Occupational Health and Safety Specialist. She has over 30 years experience in environmental and community issues management, sustainability, policy development, and regulatory consultancy services. Ms. Epps has worked extensively with the private sector, government and the United Nations, the World Bank, the IFC, and the Multilateral Investment Guarantee Agency ("MIGA"), as well as with the mining industry. She has provided policy advice to governments of developing countries on designated projects and contributed toward sustainable development and environmental management strategies. She has completed assignments in Australasia, the Pacific, Asia, the Middle East, the CIS countries, Africa, Eastern Europe, South America, and the Caribbean. Ms. Epps is a Fellow of the Australasian Institute of Mining and Metallurgy and meets all the requirements for "Qualified Person" as defined in Canadian NI 43-101.
- Mr. Bernard J. Guarnera (B.S. and M.S.), president and chairman of the Behre Dolbear Group Inc., the parent company of Behre Dolbear & Company, Inc., was BDASIA's Project Adviser. He is a Certified Mineral Appraiser, with extensive experience in the

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

valuation of mineral properties and mining companies. He is a registered Professional Engineer, a Registered Professional Geologist, and a Chartered Professional (Geology) of the Australasian Institute of Mining and Metallurgy. Mr. Guarnera has over 30 years of professional experience, and his career has included senior-level positions in exploration and development at a number of major U. S. natural resource companies. Mr. Guarnera meets all the requirements for "Competent Person" in Australia and "Qualified Person" in Canada.

BDASIA's project team, with the exception of Mr. Guarnera, has traveled to China to visit the Jiama Project site. Dr. Deng visited the Jiama Project from August 16 to August 19, 2009. Dr. Deng, Messrs Ingham and Lepetic, and Ms. Epps visited the Jiama Project from December 15 to December 19, 2009. During BDASIA's visit, discussions were held with technical and managerial staff at the mine and plant sites. Status of current mine construction and life-of-mine production schedules, budgets, and forecasts were reviewed.

The sources of information for this ITR includes unpublished technical reports for the Jiama Project prepared by the Mineral Resource Research Institute (the "Resource Institute") of the Chinese Academy of Geological Sciences in Beijing, China in November 2009 and June 2010 and the Changsha Institute in December 2009 and July 2010, technical and financial information provided by Huatailong, and BDASIA professionals' site visits to the Jiama Project and interviews with the Jiama Project management and technical personnel as well as outside consultants. The Resource Institute possesses a Class A exploration license for solid minerals issued by the MOLAR and has been engaged by Huatailong to manage the exploration work and resource estimation of the Jiama Project. The Changsha Institute has been engaged by Huatailong to conduct the feasibility study and project design for the Jiama Project.

This BDASIA ITR contains forecasts and projections prepared by BDASIA based on information provided by Huatailong. BDASIA's assessment of the projected production schedules, capital and operating costs, and project economics is based on technical reviews of project data and project site visits.

The metric system is used throughout this ITR. The currency used is the Chinese Renminbi ("RMB") or Yuan and/or the United States dollar ("US\$"). The exchange rate used in the ITR is RMB6.78 for US\$1.00, the rate of the People's Bank of China prevailing on June 30, 2010.

3.0 RELIANCE ON OTHER EXPERTS

BDASIA has relied on certain technical and financial information for the Jiama Project prepared by the Company, Huatailong, the Resource Institute, and the Changsha Institute.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

4.0 PROPERTY DESCRIPTION AND LOCATION

The Jiama Project is located in Metrorkongka County, Tibet Autonomous Region in China (Figure 4.1), approximately 68 linear km east-northeast of Lhasa, the capital city of Tibet. Lhasa has a population of approximately 400,000 and is the political, economic, cultural, and transport center in Tibet.

Figure 4.1 Location of the Jiama Project

The Jiama Project is currently owned and operated by Tibet Huatailong Mining Development Company Limited, which is indirectly owned by China Gold Group HK (51%) and Rapid Result Investments Limited (49%). The Jiama Project currently holds two permits for mining rights and two permits for exploration rights.

The Jiama mining license, with an area of 2.1599 km² for the Jiama Project, is held by Huatailong; the license is valid until July 2013 and extendable thereafter. The license number is 5400000820009, which was issued by the Land and Resource Department of Tibet Autonomous Region. The horizontal license boundary is defined by 18 corner points, and its vertical boundary is between the MSL elevations of 4,100 m and 5,300 m. The production rate specified on the mining license is 2.0 Mtpa or approximately 6,000 tpd based on 330 working days per annum. This mining license was consolidated in 2007 from four mining licenses held by different operators in accordance with the Chinese government's consolidation policy for mining properties.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

The Niumatang mining license, with an area of 0.7352 km² and located at the northwest side of the Jiama mining license, is for the open pit mining portion of the Jiama Project. The license is valid until July 2015 and extendable thereafter. The license number is C5400002010073210070276, which was issued by the Land and Resource Department of Tibet Autonomous Region. The horizontal license boundary is defined by 11 corner points, and its vertical boundary is between the MSL elevations of 4,100 m and 5,000 m. The production rate specified on the mining license is 0.9 Mtpa or approximately 2,730 tpd based on 330 working days per annum. BDASIA notes that the permitted production rate is lower than the 6,000 tpd production rate planned for the Niumatang open pit mining operation and Huatailong will need to revise the mining license to the appropriate production rate.

The Jiama exploration license surrounding two mining licenses, with an area of 76.93 km² (excluding the Jiama mining license area but including the Niumatang mining license area), is also held by Huatailong. The license number is T54520080702010972, which is issued by the Land and Resource Department of Tibet. This license expires on October 3, 2010 and is extendable thereafter. The license area is defined by six corner points and is approximately 8-km to 11-km long in the east-west direction and 6-km to 11-km wide in the north-south direction. The license area is located within the longitudes from 91°43'06"E to 91°50'00"E and the latitudes from 29°37'49"N to 29°43'53"N.

All the currently defined mineral resources for the Jiama Project are covered by the Jiama/ Niumatang mining licenses and the Jiama exploration license.

In addition to the Jiama/Niumatang mining licenses and Jiama exploration license, Huatailong also holds the exploration license for the Bayi Ranch area located southwest of the Jiama mining/ exploration licenses. This license has an area of 66.41 km² and was issued by the Land and Resource Department of Tibet. The license number is T54520080702010979. The license expires on October 3, 2010 and is extendable thereafter.

The two mining licenses and two exploration licenses for the Jiama Project covered a total area of 145.50 km^2 .

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Figure 4.2 shows the location of the two mining licenses and the two exploration licenses currently held by Huatailong.

Figure 4.2 Location of the mining/exploration licenses held by Huatailong

BDASIA has reviewed the copies of the mining licenses and exploration licenses provided by Huatailong and considers that they are valid and typical of mining and exploration licenses issued by relevant governmental agencies in China.

Mining operation for the Jiama Project is subject to a resource tax of RMB15.00 (US\$2.21) per tonne of the processed ore and a resource compensation levy of 2% for the sales revenue from the operation. Copper, molybdenum, lead, zinc, and silver produced from the mine are subjected to a VAT of 17%. Gold production is exempted from the VAT in China. The Jiama Project is also subject to a city-maintenance-and-construction tax of 7% of the VAT and an education tax of 3% of the VAT. The corporate income tax rate for Huatailong is 15%.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

To renew an exploration license, all exploration permit fees must be paid, and the minimum exploration expenditure should have been made for the area designated under the exploration permit. To renew a mining permit, all mining permit fees, resource taxes, and resource compensation levies must be paid to the state for the area designated under the mining permit. The renewal application should be submitted to the relevant state or provincial authorities at least 30 days before the expiration of a permit.

Huatailong has secured sufficient surface land areas through short-term and long-term leases for the planned mining operation and expansion, including lands for the open pits, waste dumps, accesses to the underground mine, processing plant, TSFs, office buildings, mine camp, and other mine infrastructural items.

Huatailong has obtained all necessary permits and licenses to conduct open-pit and underground mining operations and processing within the current Jiama and Niumatang mining license areas. However, the production rate of the Niumatang mining license will need be increased to be consistent with the planned production rate.

In order to retain the Jiama property, Huatailong is obligated to conduct all mining and processing activities at the Jiama Project site in accordance with the state and local laws and regulations and to pay any license fees and taxes to the relevant governmental agencies on a timely basis.

The Jiama Project is required to post an environmental reclamation bond of approximately RMB35 million ("M") (US\$5.2 M). A first payment of RMB1.5 M (US\$ 0.22 M) was made in 2009, and the remaining amount will be paid in five installments in the 5 years following the commencement of Phase I production of the Jiama Project.

Environmental liabilities at the Jiama Project area are mostly related to the mining operation by the four previous operators before the project consolidation in 2007. The original underground mine workings as well as three smaller processing plants with processing capacities ranging from 300 tpd to 850 tpd that existed before consolidation were abandoned, and the processing plants were dismantled and reclaimed by Huatailong. The associated TSFs will also be reclaimed by Huatailong.

Figure 4.3 shows the Jiama mining and exploration license boundaries, the two planned open pits (the smaller Tongqianshan Pit and the larger Niumatang pit) and waste dumps, the underground mine, processing facilities, the TSF, and other infrastructure items of the Jiama Project.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Figure 4.3 Jiama Project site map
5.0 PHYSIOGRAPHY, CLIMATE, ACCESSIBILITY, LOCAL RESOURCES AND INFRASTRUCTURE

The Jiama Project is located in a mountainous area with MSL elevations ranging from 4,350 m to 5,410 m in the Tibet Plateau. The topography in the area is characterized by steep slopes, high elevation, and large elevation differences. About half of the surface area at Jiama is covered by shrub bushes and grasses, and other half of the surface area is covered by soil and fallen rocks formed from freezing, erosion, and weathering. The soil and fallen rock cover is generally only a few meters thick.

The area has a typical continental plateau climate. The summers (also the rainy season) are relatively humid and cool, and the winters are dry and extremely cold. The temperature difference between day and night is large. Winter conditions prevail from October through March. July and August are the only frost-free months in any year. Average annual precipitation is approximately 500 mm, which mostly occurs as rains from June to September.

There are some sparsely-populated Tibetan inhabitants within the project area, with most of the land being used for low-intensity yak and sheep grazing. The primary crop in the area is highland barley.

Access to the Jiama Project area is good. A newly-paved access road of approximately 8 km connects the project site office and processing plant to the Sichuan-Tibet Highway (G318) in the north. The distance from the turning point to Lhasa in the west is approximately 60 km, and the distance to the Metrorkongka county seat in the east is approximately 8 km. Lhasa is connected to other locations in China by railroad, highways, and air. There are a number of daily flights from Lhasa to Chengdu, Beijing, and other cities in China. Concentrates produced from the Jiama Project will be trucked to the Lhasa rail station and then shipped by rail to smelter customers in various places in China.

Electricity for mine production at the Jiama Project will be provided by a newly constructed, 110-kV electricity transmission line from the Metrorkongka substation located approximately 20 km north of the project area. Electricity supply in the central Tibet region was generally insufficient for mining operations in the past. The Tibet government has been executing a power-supply development plan for the period from 2006 to 2010. Several new power generation plants will be constructed, and the Central Tibet power grid will be connected to the national power grid in China. Electricity supply will be sufficient for Phase I mine production as well as for the Phase II expansion at Jiama when the development plan is completed. Prior to that, however, the mine could experience power shortages for production. The Jiama Project has been designated as one of the most important projects in Tibet and has been granted priority in electricity supply by the Tibet government.

Although water is scarce in the general area, the project area has obtained sufficient surface water rights to support the planned mining and processing operation. Fresh water for production and the mine camp will be obtained from the Chikang River, which is a tributary of the Lhasa River. Water from the flotation tail thickeners and the tailing filtering system will be recycled for the use in production.

A significant portion of the mining personnel for the Jiama Project came from other China National Gold Group Corporation and/or non-China National Gold Group Corporation mining operations outside Tibet. Huatailong has also recruited a significant number of local Tibetan workers and some of them were being trained outside Tibet for the project during BDASIA's site visit in December 2009.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

6.0 HISTORY

There were some small-scale historical lead mining activities at the Jiama Project site before the 1950s. Geological work conducted from 1951 to 1990 delineated a 3,600-m long copper-lead-zinc mineralization zone, mostly by surface trenching at the Jiama Project area. Preliminary mineral resource estimation was also conducted. More detailed exploration work was conducted by the No. 6 Geological Brigade ("Brigade 6") of Tibet Geology and Mineral Resource Bureau between 1991 and 1999, when 16 exploration lines with an azimuth of 30° and numbered as Lines 31, 23, 15, 7, 0, 4, 8, 12, 16, 24, 32, 48, 72, 80, and 96 from northwest to southeast were designed to explore the deposit. A total of 31 diamond drill holes ("DDH") with a total drilled length of 10,091 m were drilled during the period, along with the development of 407.5 m of adits and 16,474 cubic meters ("m³") of surface trenches. Twenty-two of the Brigade 6 DDH holes with a total drilled length of 6,518 m and 10 surface trenches with a total sampled length of 349 m were used in current resource estimation as these holes/ trenches are located in the defined mineralized zones and contain reasonable-quality assay data.

Based on the Brigade 6 work, four mining licenses within the current Jiama Project mining license boundary were issued to different mining operators and four mining operations were established, including:

- Lines 15-0 Mining License: The license was issued to the Jiama Township government, which organized the Jiama Township Fupin Development Company Limited to conduct mining activity at Jiama. A 300-tpd concentrating plant was built and mining started in 2004. A total of 14 adits were developed for mining. It was estimated that a total of 49,000 t of ore was mined, with a mining loss of 9,200 t, to the end of June 2006. Mine production after June 2006 is unknown.
- Lines 0-16 Mining License: The license was issued to Lhasa Mining Company. Both open-pit mining and underground mining were conducted in the license area by the property owner. Open-pit mining above the MSL elevation of 4,780 m started in 1995, and a total of 10 adits with a level height ranging from 16 m to 40 m between the MSL elevations of 4,606 m and 4,780 were developed before 2006. Mine production to the end of 2005 was estimated at 130,000 t, with mine production since January 2006 unknown.
- Lines 16-40 Mining License: The license was issued to Brigade 6. A joint venture company, Tibet Jiama Mining Development Company Limited, between Brigade 6 and Henan Rongye Trading Company Limited was established to conduct the mining operation. Mining started in 2003. A concentrating plant with a processing capacity of 850 tpd was built in 2006. It was estimated that the total mined and lost mineral resources were 109,000 t to the end of June 2006. Production after June 2006 is unknown.
- Lines 40-80 Mining License: The license was issued to the original Tibet Huatailong Mining Development Company Limited. No concentrating plant was built for this mining license. Mining started in 2005. The estimated mine production from three mining adits was 80,000 t to June 20, 2006, with an estimated mining loss of 8,900 t. Mine production since June 2006 is unknown.

As the exact total historical mine production figure is unknown, the Resource Institute has conducted a systematic survey of the existing underground adits and mined-out stopes within the above mining license areas, and the volume calculated from the surveyed stopes has been used to deduct the consumed mineral resources for the Jiama Project.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Mining activities by the previous operators were stopped by the Tibet government on April 1, 2007 in the four mining license areas. In accordance with an agreement between the Tibet government and China National Gold Group Corporation, the four mining licenses as well as the exploration licenses in the surrounding areas were consolidated by the reorganized Huatailong in late 2007, with China Gold Group HK as the primary shareholder.

Since acquiring the consolidated mining and exploration licenses, Huatailong conducted an extensive exploration program in 2008, completing 150 DDH holes, with a total drilled length of 50,617 m (including some re-drilled intervals and two abandoned holes with a total drilled length of 198 m that are not included in the assay database for the current resource modeling). The drilling program has significantly expanded the mineral resources of the project. In 2009, as of at the end of October, 40 DDH holes totaling 13,541 m of further in-fill drilling were completed in the proposed open-pit mining area at Niumatang, located at the northwestern side of the defined mineralization zone, and step-out drilling was conducted to the northeast of the mineralized zone. The 2009 drilling has upgraded the confidence level of the defined mineral resources in the Niumatang area and has also further increased the mineral resource inventory of the project. The 2008-2009 drilling results combined with limited historical data constituted the basis for the current resource estimation for the Jiama Project, which is summarized in this ITR.

The new Jiama Project started construction in June 2008. The original underground mine workings as well as three smaller processing plants with processing capacities ranging from 300 tpd to 850 tpd that existed before consolidation were abandoned, and the processing plants were dismantled and reclaimed by Huatailong. The associated TSFs will also be reclaimed by Huatailong. Because of the significant increase in mineral resources resulting from the additional drilling, the currently proposed mining operation is planned at a much larger scale, with a Phase I production capacity of 6,000 tpd, expanding to 12,000 tpd in Phase II of the project.

During BDASIA's site visit in December 2009, construction of the Phase I, 6,000-tpd flotation processing plant and related TSF was near completion. Pre-production stripping of the smaller Tongqianshan pit was also near completion, and a small ore stockpile mined from the pit was accumulated at the processing plant site. Pre-production stripping for the larger Niumatang pit was initialized, and construction of the primary underground haulage tunnel at a MSL elevation of 4,261 m and the secondary underground ore haulage tunnel at a MSL elevation of 4,087 m was well under way. It was reported by Huatailong that the Phase I concentrator trial production started in July 2010, and commercial Phase I mining and processing operating of the Jiama Project started in September 2010. When it is fully developed, the Jiama Project will become one of the largest copper-polymetallic mining operations in China in terms of ore production rate, total metal production, and mineral resources considered compliant under the Australasian JORC Code and the CIM Standards.

7.0 GEOLOGICAL SETTING

7.1 Regional Geological Setting

The Tibet Plateau is the youngest orogenic belt in the world. Subduction and collision between the Indian Plate and Eurasian Plate from Late Mesozoic to Cenozoic time, commonly referred to as the Himalayan Orogeny, has created the world's youngest and highest mountain ranges. The complicated tectonic evolution during this period of time as well as during the preceding Yanshanian Orogeny has created a series of near east-west-trending structural zones in the plateau, with associated multiplestage magmatism and related mineralization (Figure 7.1). From south to north, these structural zones include the Indian Plate (I), the Yalung Tsangpo Suture Zone (YS), the Gangdise-Nianqing Tanggula Terrane (II), the Bangong Lake-Nu River Suture Zone (BS), Qiangtang-Sanjiang Complex Terrane (III), and the Jinshan River Suture Zone (JS). The Gangdise-Nianqing Tanggula Terrane is subdivided, from south to north, into the Gangdise Yanshanian-Early Himalayan epicontinental volcanic arc (II₁), Nianqing Tanggula faulted dome (II₂), Cuoqin-Namucuo Late Yanshanian back-arc basin (II₃), and Bange-Jiali Early Yanshanian epicontinental volcanic arc (II₄).

Figure 7.1 Tectonic Setting of the Jiama Project

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

7.2 Local Geology

The Jiama Project is located in the central-south portion of the Gangdise-Nianqing Tanggula Terrane (Figure 7.1). Stratigraphy outcropping in the Jiama Project area consists primarily of passive epicontinental clastic-carbonate rocks, including Upper-Jurassic Duodigou Formation limestones and marbles, Lower-Cretaceous Linbuzong Formation sandstones and slates, and locally, Quaternary colluviums and alluviums (Figure 7.2). Some mafic, intermediate to felsic dikes have been observed on outcrops and in drill holes, but no large intrusive bodies have yet been identified. It is believed, however, that a large granitic intrusive body exists at depth in the area and that it has provided the intense heat source for the metamorphism and also the mineralizing solutions for the copper-polymetallic mineralization. Because of the placement of the granitic intrusion, a large portion of the Duodigou limestones have been metamorphosed to marbles, and the Linbuzong clastic rocks have been largely metamorphosed into hornfels.

Figure 7.2 Geology and drill holes of the Jiama Project area (The entire map is within the boundary of the current Jiama exploration license.)

APPENDIX V-B INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

7.3 Deposit Geology

Skarns with associated copper-polymetallic mineralization were formed at the contacts of the intrusives and the Duodigou marbles as well as in the interlayer structural zone between the Duodigou marbles and the Linbuzong hornfels. Less intensive copper-polymetallic mineralization was also formed within the Linbuzong hornfels.

Structures in the area consist of thrust and detachment faults as well as associated anticlines and synclines. The interlayer fracture zone between the Duodigou marbles and Linbuzong hornfels could be a detachment fault, as it is steeply-dipping (averaging around 60°) at the upper portion and flatter (averaging around 10°) at the lower portion.

8.0 **DEPOSIT TYPES**

The Jiama deposit is a large stratiform skarn-type copper-polymetallic deposit controlled mostly by an interlayer structural zone between the Duodigou marbles and the Linbuzong hornfels. The mineralized zone measures thousands of meters in both strike and dip directions and is still open in many places. The deposit is likely formed by contact metamorphism and hydrothermal mineralization associated with a granitic intrusion.

Some lower-grade copper-polymetallic mineralization has also been encountered in the overlying Linbuzong hornfels. The hornfels-type mineralization is potentially very large; however, its economic meaning will need to be determined by further drilling and technical studies.

A three-dimensional computer block model has been constructed by BDASIA to model the skarn-type as well as the hornfels-type copper-polymetallic mineralization at Jiama and will be discussed in detail in this ITR.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

9.0 MINERALIZATION

9.1 Skarn-Type Copper-Polymetallic Mineralization

Copper-polymetallic mineralization at Jiama is primarily hosted by skarns distributed along an interlayer structural zone between the Duodigou marbles and the Linbuzong hornfels. This zone is stratiform, tabular, or lenticular in shape and comprises the primary mineralized body (I-1) in the deposit. It strikes west-northwest and dips to the northeast. The upper part of the mineralized body has a steep dip angle, averaging around 60°, whereas the lower portion of the mineralized body is much flatter, with an average dip of around 10°. The I-1 mineralized body is approximately 2,400-m long along the strike direction and 150-m to 1,900-m wide along the dip direction. Its thickness ranges from 2 m to 240 m, averaging 33.24 m. This mineralized body was defined by over 170 drill holes and contains over 97% of the currently defined mineral resources in the deposit (Figure 9.1).

Figure 9.1 3-D view of the I-1 mineralized body for the Jiama Project (The view is looking at 240° rotated azimuth with a dip angle of -15°. The yellow circle at the upper middle part of the diagram has a diameter of 200 m.)

Two zones within the I-1 mineralized body have generally been well defined by drilling on a 100-m by 100-m grid. The first is the Niumatang area located at the northwestern portion of the mineralized zone between Exploration Lines 15 and 35, which will be the primary target for the open-pit mining operation in the early years of the mine's life. The second is the area between Exploration Lines 0 and 40 and within the current Jiama mining license boundary, which will be the target for an underground mining operation. The mineralized body is still open to the northeast along the dip direction, representing significant additional exploration potential.

Seven other smaller mineralized bodies have also been modeled, but they are generally not well defined by the current drilling data.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

The I-2 mineralized body was intersected by nine drill holes between Exploration Lines 4 and 36 and consists of three small discontinuous zones located below the I-1 mineralized body. The body is hosted by stratiform skarns and is dipping to the northeast. Thickness of the I-2 mineralized body ranges from 1.5 m to 20.9 m, averaging 14.7 m.

The I-3 to I-8 mineralized bodies are small, thin, mineralized zones located southeast of the I-1 mineralized body between Exploration Lines 56 and 80 and are intersected by two to ten drill holes each. These mineralized bodies are generally lenticular in shape and generally dip to the northeast. The average thickness of the zones ranges from 3 m to 10 m.

Copper is the most important economic metal in the deposit. Other metals of economic value include molybdenum, lead, gold, silver, and zinc. These metals are distributed differently in the deposits. In general, the copper grade is higher at the upper and northwest portions and lower in the northeast portion. Molybdenum seems negatively correlated with copper, with higher grades in the northeast portion of the deposit. Gold and silver have a distribution pattern similar to that of copper in the deposit. Lead and zinc are only enriched at the upper part at the southwest of the I-1 mineralized body, which was part of the historic mining targets. Contents of harmful elements, such as arsenic, antimony, and mercury, are generally low in the deposit and will not create any marketing issues for concentrate produced from the deposit. Figures 9.2 to 9.4 present the drill hole mineralized interval average metal grade isopachs of the six elements, showing the metal distribution in the Jiama deposit.

Figure 9.2 Copper and molybdenum grade distribution in the Jiama deposit

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Figure 9.3 Gold and silver grade distribution in the Jiama deposit

Figure 9.4 Lead and zinc grade distribution in the Jiama deposit

Metallic minerals in the deposit include chalcopyrite, bornite, molybdenite, tetrahedrite, galena, sphalerite, chalcocite, digenite, covellite, native copper, pyrite, marcasite, pyrrhotite, magnetite, limonite, malachite and azurite. Nonmetallic minerals include garnet, diopside, wollastonite, tremolite,

epidote, quartz, feldspar, biotite, sericite, muscovite, chlorite, calcite, anhydrite, fluorite, and kaolinite. The metallic minerals occur as disseminations, massive aggregates, or as stockworks in the skarns.

Oxidation occurs only at the near-surface portion of the deposit. The majority of the defined mineral resources are in the unoxidized sulfide zone.

BDASIA has reviewed the interpretation of the geology and copper-polymetallic mineralization of the Jiama Project by Huatailong and the Resource Institute geologists and considers that the interpretation is reasonable.

9.2 Hornfels-Type Copper-Polymetallic Mineralization

Compared with the skarn-type copper-polymetallic mineralization, hornfels-type copperpolymetallic mineralization at Jiama is generally lower in metal grades and less well understood as it was only defined by 13 widely spaced (400×400 m to 400×200 m) drill holes. However, the mineralization is massive and very large in scale. A preliminary geological model of the hornfelshosted mineralization was constructed by the Resource Institute, which was used as a basis for a preliminary resource estimation in this ITR.

Figure 9.2 shows the hornfels-hosted copper-polymetallic mineralized body as well as the skarn-type mineralization. The currently defined hornfels-type mineralization is very large, massive body without clear preferred direction. This mineralized body is over 1,500 m long in the rotated northwestern direction, up to 1,000 m wide in the rotated northeastern direction, and up to 820 m thick (as in drill hole ZK3216).

Figure 9.2 3-D view of the Hornfels-Type Mineralization of the Jiama Project (The view is looking at 240° rotated azimuth with a dip angle of -60°. The Green solid is the hornfels-type mineralization and the magenta solid is the I-1 skarn-type mineralized body. The yellow circle at the upper middle part of the diagram has a diameter of 200 m.)

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Copper-polymetallic mineralization generally occurs as fracture coatings in the hornfels. The metallic minerals in the hornfels-type mineralization are similar to that of the skarn-type mineralization. Chalcopyrite, bornite, molybdenite, pyrite and pyrrhotite are the major metallic minerals with minor amounts of other minerals. Copper and molybdenum are the two important elements; copper is generally enriched in the upper portion of the mineralization and molybdenum is generally enriched in the lower portion of the mineralization.

10.0 EXPLORATION

10.1 Brigade 6 Exploration Work in 1990s

Exploration work conducted by Brigade 6 in the 1990s included 1:2000 and 1:25,000-scale topographic survey, geological mapping, surface trenching, adit development, and DDH drilling. A total of 31 DDH holes with a total drilled length of 10,091 m were completed, along with the development of 407.5 m of adits and 16,474 m³ of surface trenches. Exploration work was concentrated on the near-surface portion of the mineralized zones and was conducted in accordance with the industry requirements in China at the time.

10.2 Huatailong Exploration Work in 2008 and 2009

Extensive exploration work conducted by Huatailong in 2008 and 2009 (through the end of October) includes 1:2000-scale topographic surveying, geological mapping, and drilling of 192 DDH holes with a total drilled length of 64,158 m. Management of the exploration work and resource estimation was contracted to the Resource Institute in Beijing.

Survey control points were established using differential GPS instruments, based on the 1954 Beijing coordinate system and the 1956 Yellow Sea elevation system. The topographic survey was conducted by total stations, and the survey results were tied to the established survey control points. The 1:2000-scale topographic survey, with a 2-m contour interval, covered an area of 13.8 km², providing good support for the drilling and other exploration work.

11.0 DRILLING

11.1 Brigade 6 Drilling in the 1990s

DDH drilling by Brigade 6 in the 1990s was conducted in accordance with the "Core Drilling Regulation" promulgated by the former Ministry of Geology and Mineral Resources of China. Of the 31 holes drilled, only 22 with a total drilled length of 6,518 m met the requirements under the regulation. Core recoveries ranged from 65% to 95%, with an average of 84% for 15 holes. Six other holes were considered as not conforming with the regulations because the core recovery was too low or because the drill hole was terminated prematurely. Only the 22 holes meeting the regulations have been included in the database for the current resource estimation.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Table 11.1 summarizes the drill hole information completed by Brigade 6 in the 1990s.

						Donth	Core Recovery			No. of
Hole ID	Easting	Northing	Elevation	Dip	Azimuth	(m)	(1)	(2)	(3)	Samples
ZK3114	16378635	3288339	4502.9	-90	0	176.3	59.7	71.0	47.0	4
ZK1502	16378469	3287258	5023.6	-90	0	349.0	83.6	80.0	82.0	2
ZK702	16378636	3287147	4976.9	-90	0	303.5	85.2	83.6	79.5	7
ZK710	16379009	3287794	4550.0	-90	0	142.0	89.4	85.0	97.9	44
ZK002	16378967	3287321	4740.7	-90	0	200.0	71.8	81.7	96.4	52
ZK004	16379044	3287454	4653.6	-90	0	182.1	43.9	71.0	84.0	54
ZK402	16378974	3287132	4755.3	-90	0	240.2		87.9	96.8	79
ZK404	16379011	3287198	4735.9	-90	0	311.0			75.8	74
ZK804	16379131	3287199	4666.7	-90	0	250.3	93.2	91.0	89.2	87
ZK808	16379197	3287312	4597.1	-90	0	286.6	88.3	85.2	89.3	65
ZK1204	16379228	3287171	4625.3	-90	0	203.7	86.4	96.9	87.4	84
ZK1206	16379260	3287227	4612.1	-90	0	280.1			85.8	90
ZK1606	16379330	3287145	4637.0	-90	0	180.2	73.2	84.9	95.3	105
ZK1610	16379409	3287270	4735.6	-90	0	331.1	77.3	69.4	83.2	63
ZK2402	16379517	3287070	4773.8	-90	0	336.3	85.7	85.7	79.6	24
ZK2406	16379613	3287235	4860.6	-90	0	471.6	74.7	73.8	70.0	34
ZK3202	16379699	3286986	4874.8	-90	0	264.9	78.4	31.6	61.6	52
ZK3210	16379835	3287221	4947.1	-90	0	610.0	77.1	49.5	89.3	42
ZK4001	16379825	3286805	4930.2	-90	0	314.9	52.8	72.0	79.1	102
ZK7204	16380560	3286479	5072.1	-90	0	265.3	84.4	67.5	84.9	27
ZK8012	16380881	3286637	4976.0	-90	0	329.1	84.0	94.0	83.4	44
ZK8016	16380963	3286778	4934.5	-90	0	490.1	93.9	78.0	92.2	55

Table 11.11990s Brigade 6 Drill Holes for the Jiama Project

(under the 1954 Beijing coordinate system and the 1956 Yellow Sea elevation system)

Note: Core recovery (1) is for mineralized intervals; core recovery (2) is for hangingwall waste; and core recovery (3) is for footwall waste.

11.2 Huatailong Drilling in 2008 and 2009

11.2.1 2008 Drilling

Huatailong's 2008 drilling program was conducted from April 31 to December 9. Six drilling contractors with a total of 36 drill rigs completed 150 DDH holes and drilled a total length of 50,617 m. Drilling was managed and supervised by the Resource Institute. Drill hole spacing was designed at 100-200 m by 100-200 m within the mining license boundary and increased to 200-400 m by 100-400 m outside the mining license. Five of the drilled holes were terminated prematurely, but three of the relatively deep holes were still included in the database for geological purposes. Excluding the re-drilled intervals, the 2008 holes included in the Jiama drill hole database consist of 148 holes with a total drilled length of 48,970 m.

Drilling started at the surface using 130-mm or 110-mm diameter drill bits, reducing to 91-mm or 75-mm diameter drill bits after entering into the solid rocks. Core recoveries were generally good. Core recovery for the skarn mineralized intervals ranged from 60.3% to 100%, averaging 95.3%; core recovery for the hanging walls ranged from 62.7% to 100%, averaging 95.0%; and core recovery for the footwalls ranged from 65.1% to 100%, averaging 95.3%.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Drill hole collar locations were surveyed using differential GPS survey instruments after drilling, and the down-hole deviation was measured using down-hole survey instruments generally at a 100-m interval. Completed drill holes were plugged using cement, with a cement post maintained at the center of the drill hole collar.

Properly labeled and boxed drill cores were transported from the drill site to the core storage warehouse, where core logging, photographing, and sampling took place.

Table 11.2 summarizes the drill hole information completed by Huatailong in 2008.

Table 11.22008 Huatailong Drill Holes for the Jiama Project

(under the 1954 Beijing coordinate system and the 1956 Yellow Sea elevation system)

						Depth	Core Recovery			No. of
Hole ID	Easting	Northing	Elevation	Dip	Azimuth	(m)	(1)	(2)	(3)	Samples
ZK003	16378891	3287198	4791.7	-90	0	247.2	95.6	96.2	95.4	63
ZK007	16378927	3287254	4758.2	-90	0	236.0	99.3	98.8	96.4	84
ZK008	16379126	3287600	4576.4	-90	0	103.3	93.4	89.7	84.9	32
ZK011	16379009	3287394	4692.0	-90	0	192.0	94.1	95.3	93.8	42
ZK012	16379099	3287539	4585.2	-90	0	352.0	97.6	97.1	80.1	29
ZK014	16379164	3287657	4613.5	-90	0	189.2	95.8	95.4	85.0	54
ZK016	16379209	3287732	4632.1	-90	0	161.9	97.6	89.2	88.1	79
ZK018	16379313	3287913	4779.0	-90	0	347.2	94.6	86.7	88.8	159
ZK020	16379390	3288073	4873.4	-90	0	410.4	99.0	99.2	100.0	200
ZK021	16379478	3288217	4970.0	-90	0	500.9	99.9	95.7	96.5	284
ZK026	16379655	3288536	4886.4	-90	0	551.5	98.0	88.9	95.4	296
ZK1201	16379195	3287102	4673.4	-90	0	154.4	95.9	94.9	94.9	48
ZK1205	16379310	3287312	4671.8	-90	0	239.2	91.9	84.4	98.0	124
ZK1207	16379354	3287392	4685.3	-90	0	226.3	96.7	99.0	97.8	122
ZK1208	16379405	3287472	4747.0	-90	0	337.0	94.8	98.3	95.3	118
ZK1209	16379459	3287552	4798.7	-90	0	446.3	94.8		96.2	248
ZK1212	16379553	3287720	4802.9	-90	0	415.2	97.5	97.6	99.3	242
ZK1501	16378439	3287200	4984.3	-90	0	176.8	96.4	98.8	96.3	13
ZK1503	16378496	3287324	5020.8	-90	0	404.6	93.1	91.3	93.3	18
ZK1504	16378560	3287417	4952.9	-90	0	464.7	96.8	98.9	98.7	36
ZK1505	16378890	3287991	4534.9	-90	0	119.4	74.8	100.0	100.0	53
ZK1506	16378936	3288074	4563.7	-90	0	103.0	87.5	89.6	90.5	41
ZK1507	16378842	3287902	4599.5	-90	0	152.2	93.9	98.3	94.4	41
ZK1508	16378802	3287797	4650.5	-90	0	204.3	90.1	90.2	90.5	32
ZK1509	16378752	3287739	4695.3	-90	0	237.3	91.0	93.4	92.4	36
ZK1510	16378696	3287662	4756.0	-90	0	274.6	97.1	97.2	98.0	26
ZK1511	16378660	3287577	4820.7	-90	0	322.2	97.7	97.6	98.7	12
ZK1512	16378602	3287491	4895.2	-90	0	374.6	98.2	99.1	98.1	12
ZK1516	16379032	3288237	4685.0	-90	0	233.2	96.8	97.4	89.9	56
ZK1518	16379132	3288403	4826.4	-90	0	358.1	90.3	94.7	95.0	136
ZK1520	16379215	3288562	4754.6	-90	0	400.5	95.4	96.3	95.2	87
ZK1522	16379299	3288698	4683.2	-90	0	370.7	95.4	96.2	90.1	128
ZK1524	16379396	3288827	4738.2	-90	0	494.1	96.4	95.6	95.0	156
ZK1602	16379296	3287086	4630.9	-90	0	187.1	73.3	94.2	92.2	98
ZK1604	16379371	3287215	4702.3	-90	0	270.4	94.6	83.4	91.2	91
ZK1607	16379462	3287370	4733.4	-90	0	290.4	92.1	96.3	95.4	210

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

						Denth	C	ore Recove	ry	No. of
Hole ID	Easting	Northing	Elevation	Dip	Azimuth	(m)	(1)	(2)	(3)	Samples
ZK1608	16379517	3287463	4802.7	-90	0	404.7	92.6	95.6	96.3	96
ZK1609	16379569	3287558	4860.8	-90	0	480.7	62.7	81.9	99.4	337
ZK1616	16379842	3288064	5098.6	-90	0	839.4	95.5	90.0	92.4	787
ZK1618	16380037	3288409	5024.7	-90	0	800.6	95.0	65.1	93.2	444
ZK1620	16379666	3287718	4861.1	-90	0	436.1	95.4			212
ZK2001	16379334	3286993	4645.2	-90	0	162.1	93.7	94.5	93.8	132
ZK2002	16379392	3287057	4690.1	-90	0	237.2	98.9	100.0	99.2	87
ZK2004	16379427	3287109	4718.4	-90	0	273.5	97.9	98.8	99.3	112
ZK2005	16379473	3287181	4765.5	-90	0	338.9	97.7	100.0	98.7	76
ZK2006	16379513	3287267	4795.4	-90	0	377.2	96.1	100.0	96.7	186
ZK2007	16379553	3287349	4776.4	-90	0	403.9	95.9	8635	60.3	162
ZK2008	16379610	3287423	4833.3	-90	0	443.3	96.8	100.0	97.7	213
ZK2010	16379707	3287589	4918.1	-90	0	665.1	99.1	95.0	98.6	217
ZK2301	16378265	3287284	4972.3	-90	0	190.8	95.6	96.6	85.8	19
ZK2303	16378823	3288280	4567.1	-90	0	127.8	93.5	97.9	96.0	94
ZK2304	16378779	3288192	4517.4	-90	0	117.1	93.6	85.9	89.9	56
ZK2305	16378726	3288108	4567.9	-90	0	126.5	91.4	94.4	92.6	42
ZK2306	16378683	3288029	4627.7	-90	0	227.6	95.9	95.0	95.9	73
ZK2307	16378636	3287948	4692.7	-90	0	284.1	92.6	96.9	98.0	55
ZK2308	16378586	3287864	4759.9	-90	0	322.0	92.0	98.3	97.1	62
ZK2310	16378916	3288440	4690.6	-90	0	300.0	94.6	97.2	98.8	169
ZK2312	16379013	3288598	4713.8	-90	0	280.9	99.6	100.0	100.0	64
ZK2314	16379106	3288762	4596.5	-90	0	311.2	98.3	100.0	100.0	51
ZK2316	16379194	3288917	4667.5	-90	0	341.0	98.3	99.5	97.2	56
ZK2401	16379468	3286969	4745.2	-90	0	56.2	97.5		95.8	18
ZK2404	16379499	3287043	4765.7	-90	0	403.5	99.0	100.0	98.8	138
ZK2407	16379546	3287143	4807.1	-90	0	466.7	95.5	99.4	99.1	154
ZK2408	16379582	3287180	4839.3	-90	0	418.7	97.5	100.0	90.0	94
ZK2409	16379657	3287307	4829.8	-90	0	531.0	99.4	99.7	97.5	292
ZK2410	16379710	3287399	4877.6	-90	0	463.4	98.1	98.4	99.9	200
ZK2412	16379802	3287560	4968.0	-90	0	402.4	97.4			212
ZK2801	16379564	3286961	4804.4	-90	0	189.3	93.5		87.9	89
ZK2802	16379586	3286987	4822.5	-90	0	360.1	98.2	100.0	98.4	270
ZK2804	16379634	3287064	4862.5	-90	0	456.4	95.9	96.8	96.0	184
ZK2805	16379678	3287137	4897.6	-90	0	508.3	98.8	99.4	98.8	396
ZK2806	16379729	3287228	4901.1	-90	0	498.0	98.7	97.0	97.1	249
ZK2807	16379774	3287297	4879.2	-90	0	502.0	98.6	100.0	100.0	234
ZK3101	16378692	3288438	4547.1	-90	0	86.5	82.3	92.0	93.1	18
ZK3102	16378727	3288506	4584.3	-90	0	158.0	100.0	96.2	100.0	67
ZK3103	16378540	3288185	4611.4	-90	0	158.6	80.6	94.0	94.9	40
ZK3104	16378583	3288271	4554.3	-90	0	119.9	100.0	100.0	100.0	46
ZK3106	16378834	3288661	4652.9	-90	0	196.3	95.5	90.7	96.9	75
ZK3108	16378910	3288839	4549.3	-90	0	146.2	97.3	97.3	100.0	25
ZK3203	16379674	3286939	4858.4	-90	0	373.9	95.0	87.8	94.1	206
ZK3204	16379690	3286971	4880.8	-90	0	388.9	86.2	99.2	88.6	179
ZK3207	16379742	3287064	4936.0	-90	0	525.6	98.9	98.6	98.5	379
ZK3208	16379787	3287126	4967.6	-90	0	587.3	99.3	98.1	96.3	542
ZK3209	16379888	3287310	4926.9	-90	0	656.8	96.6	91.4	97.8	403
ZK3212	16379981	3287471	5037.7	-90	0	640.5	98.6		93.1	314
ZK3601	16379734	3286835	4883.3	-90	0	470.9	97.0	95.1	97.6	279
ZK3603	16379768	3286886	4881.2	-90	0	513.7	96.5	96.6	96.7	314
ZK3604	16379813	3286974	4936.3	-90	0	543.1	97.8	99.2	99.0	248

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

						Denth	С	ore Recove	ry	No. of
Hole ID	Easting	Northing	Elevation	Dip	Azimuth	(m)	(1)	(2)	(3)	Samples
ZK3605	16379851	3287041	4988.6	-90	0	678.4	95.6	100.0	85.0	350
ZK3608	16379936	3287195	4981.8	-90	0	720.8	95.6	95.2	95.5	363
ZK3901	16378432	3288396	4567.1	-90	0	156.9	93.9	99.9	100.0	22
ZK3902	16378663	3288819	4555.2	-90	0	145.0	94.6	97.7	97.9	65
ZK3904	16378746	3288946	4523.1	-90	0	96.8	98.9	9427	99.5	36
ZK4002	16379784	3286724	4914.3	-90	0	140.8	90.7	94.5	93.5	90
ZK4004	16379856	3286850	4952.4	-90	0	552.6	97.0	96.1	96.3	319
ZK4006	16379883	3286902	4958.1	-90	0	607.3	95.2	97.3	95.7	384
ZK4008	16379961	3287048	5046.9	-90	0	690.1	95.2		94.4	365
ZK406	16379059	3287273	4679.0	-90	0	154.2	94.5	98.8	100.0	40
ZK408	16379101	3287355	4636.1	-90	0	133.8	100.0	96.9	95.5	70
ZK409	16379151	3287483	4581.3	-90	0	143.4	95.3	98.8	100.0	34
ZK410	16379202	3287522	4618.0	-90	0	140.8	87.9	89.0	86.1	54
ZK411	16379260	3287622	4677.9	-90	0	217.9	91.5	70.0	91.7	47
ZK412	16379299	3287684	4688.5	-90	0	260.9	99.0	91.3	95.0	119
ZK4701	16378247	3288472	4547.0	-90	0	125.7	100.0			0
ZK4702	16378617	3289032	4518.7	-90	0	94.07	78.2	74.7	93.7	6
ZK4803	16380121	3286908	5094.5	-90	0	805.8	96.9	97.8	97.1	354
ZK4804	16380037	3286771	5077.7	-90	0	650.5	93.6		95.8	247
ZK5601	16380125	3286514	5117.4	-90	0	127.8	97.1	100.0	100.0	44
ZK5602	16380154	3286574	5155.1	-90	0	374.9	95.0		97.1	270
ZK5603	16380225	3286678	5222.4	-90	0	311.4	79.4	95.8	79.9	211
ZK5605	16380365	3286933	5258.2	-90	0	659.8	93.3	98.1	99.4	306
ZK6402	16380375	3286558	5175.5	-90	0	305.2	99.1	99.8	91.6	64
ZK6403	16380411	3286615	5218.6	-90	0	336.0	94.0	98.7	99.3	87
ZK6405	16380485	3286735	5244.1	-90	0	191.0	94.4	88.6	97.4	130
ZK6406	16380319	3286461	5123.5	-90	0	129.5	95.0	_	94.4	34
ZK701	16378614	3287100	4980.9	-90	0	182.5	92.6	94.0	93.8	54
ZK703	16378666	3287230	4950.5	-90	0	287.3	97.5	99.2	98.7	27
ZK704	16378722	3287342	4887.0	-90	0	341.2	94.5	98.0	98.4	31
ZK705	16378782	3287406	4819.3	-90	0	290.2	95.6	98.3	98.6	31
ZK706	16378819	3287492	4773.7	-90	0	270.7	96.0	100.0	99.0	13
ZK707	16378882	3287529	4707.2	-90	0	267.2	97.0	93.0	99.2	36
ZK708	16378890	3287637	4676.5	-90	0	224.3	98.1	96.7	98.0	17
ZK709	16378959	3287715	4613.4	-90	0	194.5	95.5	96.9	96.8	21
ZK711	16379059	3287869	4588.2	-90	0	152.3	93.0	99.5	97.6	86
ZK712	16379104	3287947	4640.9	-90	0	198.9	95.6	96.9	92.5	103
ZK716	16379197	3288119	4761.7	-90	0	284.7	98.9	99.9	98.4	70
ZK718	16379294	3288267	4864.8	-90	0	400.7	98.0	92.0	63.9	209
ZK720	16379378	3288431	4881.5	-90	0	405.6	99.2	100.0	98.2	189
ZK7201	16380591	3286524	5101.5	-90	0	171.5	95.0	73.3	99.0	70
ZK7202	16380637	3286602	5107.1	-90	0	520.7	95.7	99.0	99.1	113
ZK7203	16380682	3286689	5120.7	-90	0	288.3	91.7	97.3	97.3	49
ZK7205	16380545	3286441	5075.4	-90	0	172.5	98.5	100.0	99.6	58
ZK722	16379461	3288580	4789.6	-90	0	457.3	99.5	90.9	96.7	205
ZK8001	16380843	3286564	4982.4	-90	0	97.1	92.5	95.5	96.0	37
ZK8002	16380911	3286679	4967.7	-90	0	348.4	99.4	99.2	99.5	74
ZK8003	16380943	3286733	4937.1	-90	0	519.5	90.1	95.1	95.5	124
ZK8006	16381037	3286893	4865.1	-90	0	554.5	96.2		96.2	139
ZK803	16379163	3287257	4627.9	-90	0	200.9	92.8	95.9	99.6	94
ZK805	16379237	3287400	4624.8	-90	0	160.1	96.0	97.5	97.0	75
ZK806	16379297	3287481	4679.9	-90	0	210.0	98.8	100.0	98.6	145

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

						Denth	C	ore Recove	ry	No. of
Hole ID	Easting	Northing	Elevation	Dip	Azimuth	(m)	(1)	(2)	(3)	Samples
ZK807	16379341	3287559	4719.9	-90	0	263.5	99.2	97.9	99.3	185
ZK809	16379381	3287642	4746.6	-90	0	293.6	99.6	100.0	100.0	163
ZK812	16379488	3287805	4801.2	-90	0	364.7	98.7		97.6	222
ZK816	16379577	3287972	4928.5	-90	0	394.7	96.8			181
ZK8801	16381189	3286752	4784.8	-90	0	215.7	97.7	97.1	97.0	70
ZK8802	16381202	3286808	4764.4	-90	0	354.1	88.4			27
ZK8807	16376317	3291850	4649.4	-90	0	547.3	98.2			266
ZK9602	16376510	3291630	4645.5	-90	0	441.1	96.2			308

Note: Core recovery (1) is for mineralized intervals; core recovery (2) is for hangingwall waste; and core recovery (3) is for footwall waste.

11.2.2 2009 Drilling

Huatailong's 2009 drilling through the end of October consisted of 36 in-fill DDH holes with a total drilled length of 9,985 m in the Niumatang area and 4 step-out DDH holes with a total drilled length of 3,556 m to the northeast of the mineralized zone. The in-fill drilling has brought the drilling density in the Niumatang area to 100-m by 100-m, which is sufficient to produce a resource estimate for open-pit mine planning and ore reserve estimation in the area. The 4 step-out drill holes to the northeast have further extended the mineralized zone and increased the total mineral inventory of the Jiama deposit.

Drilling and surveying of the drill holes for the 2009 program were conducted in a similar manner as that for the 2008 drilling program. Core recoveries were generally good. Core recovery for the mineralized intervals ranged from 76.3% to 100%, averaging 96.5%; core recovery for the hanging walls ranged from 87.6% to 100%, averaging 96.3%; and core recovery for the footwalls ranged from 85.4% to 100%, averaging 96.4%.

Table 11.3 summarizes the drill hole information completed by Huatailong in 2009.

Table 11.32009 Huatailong Drill Holes for the Jiama Project

(under the 1954 Beijing coordinate system and the 1956 Yellow Sea elevation system)

						Depth	Co	re Recove	ery	No. of
Hole ID	Easting	Northing	Elevation	Dip	Azimuth	(m)	(1)	(2)	(3)	Samples
ZK1514	16378986	3288156	4632.0	-90	0	195.7	92.0	96.4	96.6	73
ZK1517	16379081	3288333	4768.5	-90	0	289.8	96.8	85.4	82.7	50
ZK1526	16379469	3289021	4820.3	-90	0	645.5	98.5	98.9	99.9	195
ZK1902	16378788	3288016	4584.3	-90	0	168.7	93.7	99.1	98.1	94
ZK1904	16378838	3288084	4533.0	-90	0	119.5	87.6	97.8	97.9	62
ZK1906	16378871	3288177	4553.0	-90	0	165.5	100.0	100.0	99.7	146
ZK1908	16378935	3288256	4639.0	-90	0	188.2	96.3	95.3	99.2	99
ZK1910	16378969	3288336	4696.4	-90	0	289.1	98.1	99.4	99.1	166
ZK1912	16379020	32884112	4753.5	-90	0	324.7	99.2	100.0	99.2	115
ZK1914	16379068	3288501	4787.9	-90	0	419.1	99.7	98.1	100.0	113
ZK1916	16379107	3288582	4748.2	-90	0	406.2	97.9	99.1	99.0	63
ZK1918	16379157	3288670	4693.0	-90	0	327.3	98.7	96.3	91.9	101
ZK2309	16378871	3288365	4636.4	-90	0	241.0	97.2	97.3	99.5	159
ZK2311	16378970	3288520	4754.9	-90	0	425.2	98.6	99.6	98.9	119
ZK2313	16379066	3288680	4663.8	-90	0	259.3	95.2	91.6	91.4	71
ZK2318	16379301	3289095	4751.3	-90	0	581.1	96.2	98.0	96.4	48
ZK2320	16379386	3289247	4839.9	-90	0	693.4	97.4	85.8	96.5	49
ZK2702	16378623	3288112	4614.2	-90	0	206.9	93.7	98.5	98.0	33
ZK2704	16378662	3288190	4559.4	-90	0	131.4	99.3	88.3	75.3	34
ZK2706	16378708	3288274	4509.2	-90	0	115.8	92.2	90.2	93.6	55
ZK2708	16378768	3288347	4567.1	-90	0	175.2	100.0	100.0	99.5	75
ZK2710	16378799	3288450	4613.2	-90	0	185.8	91.6	94.3	99.4	110
ZK2712	16378855	3288531	4683.7	-90	0	321.3	98.9	98.0	98.2	202
ZK2714	16378899	3288609	4683.8	-90	0	335.7	96.7	99.7	99.3	124
ZK2716	16378951	3288690	4642.2	-90	0	223.9	94.5	98.8	99.7	66
ZK2718	16378998	3288771	4596.9	-90	0	208.1	91.8	85.6	93.2	37
ZK3105	16378771	3288590	4646.1	-90	0	146.2	99.0	98.5	98.2	65
ZK3107	16378867	3288749	4604.1	-90	0	170.0	97.5	98.3	99.7	37
ZK3110	16379005	3289000	4639.8	-90	0	266.5	98.8	100.0	93.8	81
ZK3216	16380181	3287825	5205.4	-90	0	864.4	96.5	92.0		428
ZK3220	16380384	3288199	5232.0	-90	0	935.2	98.2	93.4	100.0	508
ZK3224	16380587	3288504	5217.2	-90	0	1000.4	98.3	99.3		306
ZK3506	16378676	3288631	4628.5	-90	0	185.4	94.6	99.8	98.2	148
ZK3508	16378733	3288720	4610.6	-90	0	180.5	88.8	99.6	96.8	134
ZK3510	16378773	3288794	4568.3	-90	0	93.5	98.1	98.5	98.9	18
ZK3906	16378847	3289121	4593.3	-90	0	225.4	97.3	96.0	98.4	24
ZK3910	16379039	3289454	4645.8	-90	0	540.7	98.9	99.5	97.9	75
ZK4012	16380173	3287395	5084.5	-90	0	755.7	96.6		98.5	366
ZK4706	16378675	3289224	4554.0	-90	0	198.6	93.3	98.3	94.6	22
ZK4708	16378770	3289405	4593.8	-90	0	334.5	97.7	91.4	93.4	24

Note: Core recovery (1) is for mineralized intervals; core recovery (2) is for hangingwall waste; and core recovery (3) is for footwall waste.

11.3 Discussion

As the primary skarn-type mineralized body has a steep dip angle (averaging 60°) at the upper (southwest) portion and is flatter (with an average dipping angle of 10°) at the lower (northeast) portion at the Jiama Project, and as the drill holes were drilled mostly vertically, the true thickness of the

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

mineralized zone at the location of a drill hole is approximately 0.50 and 0.98 times the drilled intercepted mineralized zone length for the upper steeply-dipping zone and the lower flatter zone, respectively.

These drilling results defined the lateral extents and metal grade distribution of the skarn-type mineralization for the Jiama Project and formed a solid basis for the skarn-type mineral resource and mineral reserve estimates. The drilling results have also provided a preliminary basis for the modeling of the hornfels-type copper-polymetallic mineralization.

12.0 SAMPLING METHOD AND APPROACH

12.1 Brigade 6 Sampling in the 1990s

Core samples were taken by a mechanical splitter. Half of the core was sent for sample preparation and assay, and the other half was retained for records. Sample intervals were generally 1 to 2 m. Surface trenches were sampled by channels 5-cm wide and 3-cm deep, with sample intervals of 1 to 2 m. Channels were oriented as much as possible perpendicular to the direction of the mineralized/ alteration zone extension.

Table 12.1 lists the skarn-type mineralized intervals in the drill holes drilled in the 1990s for the Jiama Project.

Mineralized Interval		Est. True	Average Grade						
From	To	Length	Thickness (m)	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %
10.09	16.44	6.35	6.25	1.12	0.003	0.20	11.99	0.02	0.02
254.50	260.37	5.87	2.94	0.53	0.000	0.00	0.00	3.58	1.66
83.05	85.34	2.29	2.26	1.13	0.007	1.13	13.64	0.02	0.20
151.87	191.45	39.58	38.98	1.30	0.015	0.59	24.63	0.27	0.09
134.86	151.48	16.62	16.37	0.33	0.015	0.22	9.29	0.04	0.02
13.80	124.42	43.19	21.60	0.56	0.018	0.23	13.56	0.52	0.16
121.17	180.49	42.83	21.42	0.78	0.045	0.28	8.75	0.20	0.04
110.85	185.61	27.80	13.90	1.62	0.297	0.29	14.50	0.14	0.55
80.50	85.68	5.18	5.10	1.09	0.004	0.31	9.74	0.01	0.14
43.71	105.39	61.68	60.74	1.03	0.010	0.38	8.55	0.08	0.03
63.97	125.96	61.99	61.05	0.46	0.029	0.06	4.21	0.01	0.02
98.21	147.87	49.66	48.91	0.33	0.025	0.09	4.78	0.01	0.02
252.58	284.86	32.28	31.79	1.85	0.006	0.75	8.49	0.02	0.01
255.53	271.70	16.17	15.92	0.15	0.001	0.01	5.19	0.01	0.01
436.65	447.92	11.27	11.10	0.44	0.139	0.02	9.58	0.02	0.02
519.96	586.09	66.13	65.13	0.24	0.032	0.00	0.00	0.00	0.00
201.47	308.66	107.19	53.60	0.37	0.015	0.11	13.57	0.84	0.54
144.50	162.50	18.00	17.73	2.44	0.000	0.00	0.00	0.03	0.03
188.49	254.55	49.44	48.69	0.68	0.016	0.00	0.00	0.11	0.21
217.04	442.82	23.39	23.03	0.83	0.004	0.40	13.26	1.56	0.16
	Min From 10.09 254.50 83.05 151.87 134.86 13.80 121.17 110.85 80.50 43.71 63.97 98.21 252.58 255.53 436.65 519.96 201.47 144.50 188.49 217.04	From To 10.09 16.44 254.50 260.37 83.05 85.34 151.87 191.45 134.86 151.48 13.80 124.42 121.17 180.49 110.85 185.61 80.50 85.68 43.71 105.39 63.97 125.96 98.21 147.87 252.58 284.86 255.53 271.70 436.65 447.92 519.96 586.09 201.47 308.66 144.50 162.50 188.49 254.55 217.04 442.82	Mineralized IntervalFromToLength 10.09 16.44 6.35 254.50 260.37 5.87 83.05 85.34 2.29 151.87 191.45 39.58 134.86 151.48 16.62 13.80 124.42 43.19 121.17 180.49 42.83 110.85 185.61 27.80 80.50 85.68 5.18 43.71 105.39 61.68 63.97 125.96 61.99 98.21 147.87 49.66 252.58 284.86 32.28 255.53 271.70 16.17 436.65 447.92 11.27 519.96 586.09 66.13 201.47 308.66 107.19 144.50 162.50 18.00 188.49 254.55 49.44 217.04 442.82 23.39	$\begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline From & To & Length & Thickness (m) \\ \hline \hline From & To & Length & Thickness (m) \\ \hline \hline 10.09 & 16.44 & 6.35 & 6.25 \\ \hline 254.50 & 260.37 & 5.87 & 2.94 \\ \hline 83.05 & 85.34 & 2.29 & 2.26 \\ \hline 151.87 & 191.45 & 39.58 & 38.98 \\ \hline 134.86 & 151.48 & 16.62 & 16.37 \\ \hline 13.80 & 124.42 & 43.19 & 21.60 \\ \hline 121.17 & 180.49 & 42.83 & 21.42 \\ \hline 110.85 & 185.61 & 27.80 & 13.90 \\ \hline 80.50 & 85.68 & 5.18 & 5.10 \\ \hline 43.71 & 105.39 & 61.68 & 60.74 \\ \hline 63.97 & 125.96 & 61.99 & 61.05 \\ \hline 98.21 & 147.87 & 49.66 & 48.91 \\ \hline 252.58 & 284.86 & 32.28 & 31.79 \\ \hline 255.53 & 271.70 & 16.17 & 15.92 \\ \hline 436.65 & 447.92 & 11.27 & 11.10 \\ \hline 519.96 & 586.09 & 66.13 & 65.13 \\ \hline 201.47 & 308.66 & 107.19 & 53.60 \\ \hline 144.50 & 162.50 & 18.00 & 17.73 \\ \hline 188.49 & 254.55 & 49.44 & 48.69 \\ \hline 217.04 & 442.82 & 23.39 & 23.03 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

 Table 12.1

 Skarn-Type Mineralized Intervals in 1990s Drill Holes for the Jiama Project

12.2 Huatailong Sampling in 2008 and 2009

Core samples were taken by a diamond rock saw. Half of the core was sent for sample preparation and assay, and the other half was retained for records. Sample intervals were generally 1 m

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

for the skarn-type mineralization and 2 m for the hornfels-type mineralization. Variable sample intervals sometimes were used based on geological characteristics. Samples were taken continuously within the mineralized zones as well as every 2 m among the host rocks on each side of a mineralized zone. A total of 19,536 and 3,453 core samples were taken for grade analysis in 2008 and 2009 (up to the end of October), respectively.

Tables 12.2 and 12.3 list the skarn-type mineralized intervals in the 2008 and 2009 drill holes for the Jiama Project, respectively.

Mineralized Interval			rval	Est. True	Average Grade					
Hole Id	From	To	Length	Thickness (m)	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %
ZK003	212.33	231.30	18.97	9.49	0.22	0.273	0.06	7.70	0.07	0.09
ZK007	175.23	198.73	23.50	23.14	0.20	0.130	0.02	9.97	0.12	0.01
ZK008	84.22	86.22	2.00	1.97	0.04	0.000	0.02	0.52	0.00	0.00
ZK011	139.77	156.88	17.11	16.85	0.38	0.086	0.08	7.79	0.04	0.03
ZK012	82.33	94.83	12.50	12.31	0.90	0.009	0.06	18.17	0.09	0.02
ZK014	120.80	127.95	7.15	7.04	0.54	0.053	0.17	16.46	0.14	0.03
ZK016	143.90	146.10	2.20	2.17	0.51	0.005	0.33	6.68	0.00	0.01
ZK018	275.88	317.47	41.59	40.96	0.52	0.024	0.26	8.79	0.01	0.01
ZK020	364.20	386.70	22.50	22.16	0.30	0.031	0.11	5.67	0.01	0.01
ZK021	430.30	498.20	67.90	66.87	0.52	0.050	0.29	10.51	0.01	0.01
ZK026	466.70	547.60	80.90	79.67	0.03	0.070	0.01	0.67	0.00	0.01
ZK1201	78.93	120.52	41.59	20.80	0.55	0.024	0.22	9.89	0.01	0.02
ZK1205	152.66	199.08	46.42	45.71	1.14	0.064	0.42	20.33	0.00	0.01
ZK1207	169.44	200.50	31.06	30.59	0.07	0.103	0.01	1.07	0.01	0.01
ZK1208	250.31	314.39	64.08	63.11	1.23	0.060	1.03	17.92	0.01	0.01
ZK1209	312.10	427.55	115.45	113.70	0.93	0.008	0.37	17.88	0.01	0.02
ZK1212	304.50	393.40	88.90	87.55	0.39	0.069	0.12	8.61	0.04	0.09
ZK1501	145.07	153.48	8.41	4.21	0.04	0.006	0.01	15.26	1.36	0.75
ZK1505	27.10	54.20	27.10	26.69	0.52	0.004	0.21	14.69	0.01	0.00
ZK1506	53.80	72.80	19.00	18.71	0.59	0.008	0.20	13.07	0.00	0.01
ZK1507	132.72	143.28	10.56	10.40	1.00	0.023	0.27	36.37	0.01	0.01
ZK1516	154.85	198.30	43.45	42.79	0.52	0.072	0.24	11.62	0.01	0.01
ZK1518	269.13	276.12	6.99	6.88	0.23	0.048	0.05	2.53	0.01	0.01
ZK1520	337.07	400.54	63.47	62.51	0.38	0.162	0.15	7.01	0.01	0.01
ZK1522	307.83	362.07	54.24	53.42	0.50	0.032	0.26	9.37	0.01	0.01
ZK1524	439.47	461.00	21.53	21.20	0.33	0.132	0.18	6.77	0.01	0.01
ZK1602	54.90	129.26	74.36	37.18	0.99	0.016	0.35	15.84	0.01	0.01
ZK1604	196.40	240.50	44.10	43.43	0.61	0.023	0.12	7.16	0.00	0.01
ZK1607	247.49	284.00	36.51	35.96	1.92	0.035	0.75	36.24	0.01	0.01
ZK1608	330.20	393.89	63.69	62.72	1.33	0.007	0.43	23.51	0.01	0.01
ZK1609	413.10	456.65	43.55	42.89	0.19	0.047	0.06	4.27	0.00	0.01
ZK1616	587.16	839.36	252.20	248.37	0.76	0.102	0.26	12.56	0.01	0.01
ZK1618	687.40	790.26	102.86	101.30	0.12	0.069	0.05	2.82	0.01	0.00
ZK1620	412.26	432.68	20.42	20.11	0.31	0.019	0.12	5.37	0.01	0.00
ZK2001	54.59	140.65	73.65	36.83	0.74	0.006	0.15	12.98	0.02	0.03
ZK2002	143.80	218.90	18.80	18.51	0.58	0.044	0.23	8.27	0.00	0.02
ZK2004	211.90	231.40	19.50	19.20	0.31	0.022	0.17	6.01	0.00	0.01
ZK2005	298.30	325.40	27.10	26.69	0.73	0.017	0.20	14.39	0.06	0.21
ZK2006	324.00	369.00	45.00	44.32	0.66	0.054	0.16	9.48	0.01	0.01

 Table 12.2

 Skarn-Type Mineralized Intervals in 2008 Drill Holes for the Jiama Project

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

	Mineralized Interval Est. True			Average Grade						
Hole Id	From	To	Length	Thickness (m)	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %
ZK2007	331.50	368.50	37.00	36.44	0.81	0.004	0.21	14.69	0.02	0.19
ZK2008	380.60	438.10	57.50	56.63	0.96	0.031	0.32	17.60	0.00	0.00
ZK2010	566.30	655.20	88.90	87.55	0.28	0.114	0.07	5.58	0.01	0.01
ZK2301	130.38	140.58	10.20	10.05	0.09	0.004	0.09	35.61	2.97	2.27
ZK2303	36.26	95.92	59.66	58.75	1.12	0.031	0.30	22.57	0.02	0.02
ZK2304	34.70	37.00	2.30	2.27	0.51	0.116	0.05	4.42	0.01	0.01
ZK2305	76.08	86.08	10.00	9.85	1.81	0.022	0.48	60.88	0.01	0.01
ZK2306	178.44	200.05	21.61	21.28	0.17	0.027	0.03	4.29	0.01	0.01
ZK2307	256.53	267.53	11.00	10.83	0.87	0.002	0.21	40.99	0.57	1.68
ZK2308	306.16	310.16	4.00	3.94	0.32	0.007	0.19	19.24	0.24	0.01
ZK2310	137.50	258.50	121.00	119.16	1.10	0.071	0.66	20.21	0.01	0.01
ZK2312	231.10	272.50	41.40	40.77	0.67	0.023	0.14	16.69	0.03	0.03
ZK2314	224.40	229.40	5.00	4.92	0.49	0.033	0.17	10.11	0.01	0.01
ZK2316	320.80	323.80	3.00	2.95	0.96	0.001	0.51	29.05	0.01	0.02
ZK2401	42.00	55.00	13.00	6.50	0.56	0.002	0.30	11.16	0.04	0.04
ZK2404	229.00	334.90	105.90	52.95	0.45	0.016	0.08	8.61	0.08	0.03
ZK2407	344.00	378.30	34.30	33.78	0.84	0.017	0.26	31.18	1.71	1.08
ZK2408	382.92	404.60	21.68	21.35	0.68	0.020	0.24	10.56	0.01	0.07
ZK2409	399.40	466.40	67.00	65.98	1.91	0.074	1.84	36.94	0.01	0.01
ZK2410	416.40	442.80	26.40	26.00	0.16	0.053	0.15	3.80	0.01	0.01
ZK2801	104.52	147.52	43.00	21.50	0.13	0.058	0.01	1.94	0.01	0.01
ZK2802	149.80	336.70	109.30	54.65	0.46	0.026	0.08	8.12	0.04	0.02
ZK2804	384.86	429.80	44.94	22.47	1.18	0.019	0.33	18.34	0.13	0.21
ZK2805	458.80	474.30	15.50	15.26	1.64	0.010	0.75	38.40	0.00	0.01
ZK2806	463.50	496.30	32.80	32.30	0.95	0.094	0.47	21.86	0.00	0.01
ZK2807	428.45	476.20	47.75	47.02	0.60	0.039	0.07	6.73	0.02	0.03
ZK3101	39.50	50.78	11.28	11.11	3.48	0.186	0.97	175.26	3.69	1.49
ZK3104	79.20	89.20	10.00	9.85	0.91	0.001	0.20	24.95	0.21	0.23
ZK3106	181.30	185.30	4.00	3.94	8.25	0.002	8.20	209.92	0.03	0.01
ZK3108	91.50	109.20	17.70	17.43	0.31	0.084	0.09	10.38	0.02	0.01
ZK3203	212.35	358.30	127.95	63.98	0.65	0.024	0.21	15.00	0.05	0.03
ZK3204	369.03	382.25	13.22	6.61	0.48	0.026	0.28	10.42	0.01	0.02
ZK3207	454.40	511.40	57.00	56.13	0.44	0.031	0.15	7.02	0.01	0.01
ZK3208	540.20	549.20	9.00	8.86	0.02	0.054	0.01	1.13	0.02	0.02
ZK3209	525.40	656.80	131.40	129.40	0.72	0.052	0.10	6.99	0.02	0.03
ZK3212	609.60	640.50	30.90	30.43	0.51	0.078	0.13	7.58	0.02	0.01
ZK3601	129.82	469.60	335.78	167.89	0.49	0.029	0.19	11.43	0.04	0.03
ZK3603	309.70	496.20	165.42	82.71	0.62	0.055	0.27	12.32	0.01	0.01
ZK3604	431.46	521.84	90.38	89.01	0.19	0.059	0.04	4.54	0.06	0.04
ZK3605	497.90	671.91	174.01	171.37	0.31	0.075	0.08	6.70	0.03	0.02
ZK3608	630.11	717.60	87.49	86.16	1.66	0.026	0.34	16.57	0.01	0.02
ZK3904	79.70	81.70	2.00	1.97	0.48	0.014	0.18	10.10	0.00	0.01
ZK4002	73.59	134.05	60.46	30.23	0.34	0.015	0.07	10.72	0.11	0.11
ZK4004	395.67	527.18	131.51	65.76	1.19	0.027	0.45	22.99	0.04	0.02
ZK4006	453.64	565.55	111.91	110.21	0.70	0.033	0.22	17.15	0.05	0.01
ZK4008	579.03	686.03	107.00	105.37	0.15	0.010	0.08	3.90	0.01	0.01
ZK406	110.62	117.62	7.00	6.89	0.32	0.061	0.03	6.49	0.06	0.02
ZK408	93.56	107.40	13.84	13.63	0.36	0.047	0.06	8.23	0.01	0.01
ZK409	80.90	85.50	4.60	4.53	2.99	0.142	0.46	60.32	0.01	0.01
ZK410	93.66	119.31	25.65	25.26	3.31	0.089	0.84	38.09	0.03	0.02
ZK411	182.61	198.42	15.81	15.57	0.84	0.074	0.35	16.04	0.01	0.01
ZK412	177.70	213.10	35.40	34.86	0.21	0.057	0.04	2.77	0.01	0.01

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Mineralized Interval			Est True	Average Grade						
Hole Id	From	To	Length	Thickness (m)	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %
ZK4804	498.57	599.17	100.60	50.30	0.49	0.038	0.24	10.22	0.06	0.03
ZK5601	28.36	89.88	61.52	30.76	0.28	0.021	0.08	7.76	0.07	0.28
ZK5602	129.90	373.00	243.10	121.55	0.93	0.017	0.32	22.82	0.45	0.26
ZK5603	83.76	306.83	146.07	73.04	0.31	0.055	0.14	6.53	0.12	0.14
ZK6402	178.20	285.60	12.00	11.82	0.41	0.049	0.14	10.83	0.10	0.04
ZK6403	94.50	99.50	5.00	4.92	0.05	0.072	0.06	1.23	0.07	0.11
ZK6405	71.60	191.00	52.40	51.60	0.77	0.027	0.11	7.65	0.07	0.04
ZK701	84.84	124.30	39.46	19.73	0.35	0.014	0.04	38.86	1.15	0.96
ZK703	271.80	278.80	7.00	3.50	0.19	0.002	0.11	23.75	2.12	6.90
ZK704	305.46	314.46	9.00	8.86	0.50	0.006	0.14	45.38	1.14	1.06
ZK705	253.72	260.40	6.68	6.58	0.45	0.001	0.15	21.19	0.21	0.02
ZK706	259.30	269.20	9.90	9.75	0.62	0.002	0.16	10.53	0.01	0.12
ZK707	216.72	232.70	15.98	15.74	0.76	0.001	0.23	36.06	0.77	0.65
ZK708	195.38	207.83	12.45	12.26	0.58	0.012	0.28	17.14	0.01	0.01
ZK709	146.72	155.10	8.38	8.25	1.36	0.011	0.50	44.77	0.01	0.02
ZK711	87.58	135.70	48.12	47.39	0.48	0.205	0.12	12.40	0.03	0.03
ZK712	130.18	137.18	7.00	6.89	0.10	0.083	0.00	2.44	0.02	0.02
ZK716	231.98	258.76	26.78	26.37	2.08	0.034	0.07	16.39	0.02	0.02
ZK718	332.02	395.96	63.94	62.97	0.09	0.039	0.05	2.03	0.01	0.01
ZK720	336.30	404.80	68.50	67.46	0.42	0.019	0.18	7.29	0.00	0.01
ZK7201	144.63	148.63	4.00	3.94	0.04	0.037	0.02	0.58	0.02	0.02
ZK7202	74.34	440.05	21.90	21.57	0.13	0.100	0.03	6.65	0.39	0.04
ZK7203	84.27	147.15	8.00	7.88	0.58	0.003	0.13	14.75	1.03	1.72
ZK722	397.20	439.26	42.06	41.42	0.72	0.073	0.28	13.98	0.01	0.01
ZK8001	35.80	64.90	29.10	28.66	1.54	0.002	0.60	21.50	0.21	0.14
ZK8002	133.64	138.64	5.00	4.92	0.09	0.000	0.18	20.84	1.09	0.84
ZK722	397.20	439.26	42.06	41.42	0.72	0.073	0.28	13.98	0.01	0.01
ZK8001	35.80	64.90	29.10	28.66	1.54	0.002	0.60	21.50	0.21	0.14
ZK8002	133.64	138.64	5.00	4.92	0.09	0.000	0.18	20.84	1.09	0.84
ZK722	397.20	439.26	42.06	41.42	0.72	0.073	0.28	13.98	0.01	0.01
ZK8001	35.80	64.90	29.10	28.66	1.54	0.002	0.60	21.50	0.21	0.14
ZK8002	133.64	138.64	5.00	4.92	0.09	0.000	0.18	20.84	1.09	0.84
ZK722	397.20	439.26	42.06	41.42	0.72	0.073	0.28	13.98	0.01	0.01
ZK8001	35.80	64.90	29.10	28.66	1.54	0.002	0.60	21.50	0.21	0.14
ZK8002	133.64	138.64	5.00	4.92	0.09	0.000	0.18	20.84	1.09	0.84
ZK722	397.20	439.26	42.06	41.42	0.72	0.073	0.28	13.98	0.01	0.01
ZK8001	35.80	64.90	29.10	28.66	1.54	0.002	0.60	21.50	0.21	0.14
ZK8002	133.64	138.64	5.00	4.92	0.09	0.000	0.18	20.84	1.09	0.84

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

	Mir	neralized Inte	rval	Est. True			Averag	e Grade		
Hole Id	From	To	Length	Thickness (m)	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %
ZK1514	112.70	137.80	25.10	24.72	0.43	0.113	0.12	6.39	0.01	0.01
ZK1517	241.05	267.48	26.43	26.03	1.20	0.044	0.37	27.51	0.01	0.02
ZK1526	616.70	644.30	27.60	27.18	0.87	0.002	0.32	21.00	0.01	0.10
ZK1902	75.88	93.88	18.00	17.73	1.16	0.046	0.14	34.81	0.01	0.03
ZK1904	51.28	107.40	56.12	55.27	0.66	0.025	0.21	16.04	0.01	0.01
ZK1906	63.00	125.00	62.00	61.06	0.59	0.011	0.22	14.36	0.01	0.01
ZK1908	100.20	143.30	43.10	42.45	1.05	0.057	0.37	25.88	0.01	0.01
ZK1910	197.50	222.40	24.90	24.52	1.22	0.041	0.69	27.89	0.00	0.01
ZK1912	247.70	292.70	45.00	44.32	2.38	0.111	1.32	61.03	0.01	0.02
ZK1914	345.80	377.90	32.10	31.61	0.70	0.042	0.10	10.87	0.01	0.02
ZK1916	349.17	355.90	6.73	6.63	0.77	0.028	0.22	15.56	0.01	0.03
ZK1918	312.30	320.86	8.56	8.43	0.93	0.022	0.37	33.93	0.01	0.02
ZK2309	90.62	201.38	110.76	109.08	0.80	0.018	0.36	15.87	0.01	0.01
ZK2311	247.65	316.25	68.60	67.56	0.94	0.055	0.31	19.19	0.01	0.02
ZK2313	217.05	224.05	7.00	6.89	0.50	0.076	0.12	8.19	0.00	0.01
ZK2318	514.90	524.60	9.70	9.55	0.42	0.007	0.22	9.60	0.01	0.01
ZK2320	654.46	683.46	29.00	28.56	0.20	0.173	0.08	4.06	0.00	0.01
ZK2702	132.13	154.27	22.14	21.80	0.54	0.055	0.08	10.82	0.01	0.01
ZK2704	90.68	91.68	1.00	0.98	0.05	0.056	0.00	0.71	0.01	0.01
ZK2706	67.57	92.26	24.69	24.31	0.74	0.009	0.07	23.98	0.16	0.39
ZK2708	59.40	78.20	18.80	18.51	2.06	0.009	1.07	45.65	0.01	0.01
ZK2710	97.84	162.90	65.06	64.07	1.77	0.010	0.82	30.41	0.01	0.01
ZK2712	212.50	293.40	80.90	79.67	0.42	0.016	0.15	7.79	0.01	0.02
ZK2714	246.63	312.23	65.60	64.60	0.72	0.011	0.23	13.77	0.01	0.03
ZK2716	166.94	196.94	30.00	29.54	0.33	0.062	0.13	8.17	0.00	0.13
ZK2718	120.55	149.32	28.77	28.33	1.26	0.118	0.82	18.26	0.04	0.02
ZK3105	134.70	136.25	1.55	1.53	0.30	0.032	0.02	1.45	0.00	0.01
ZK3107	144.50	157.50	13.00	12.80	0.59	0.012	0.10	14.19	0.00	0.01
ZK3110	207.10	240.32	33.22	32.72	1.06	0.113	0.13	16.27	0.02	0.01
ZK3508	112.00	114.00	2.00	1.97	0.00	0.045	0.00	0.62	0.00	0.01
ZK3510	74.04	77.64	3.60	3.55	0.12	0.113	0.02	1.39	0.00	0.01
ZK3906	201.69	207.69	6.00	5.91	0.32	0.086	0.16	8.34	0.00	0.01
ZK3910	510.80	520.80	10.00	9.85	0.54	0.001	0.25	13.76	0.00	0.01
ZK4012	657.15	755.68	98.53	97.03	0.84	0.030	0.32	16.34	0.01	0.03
ZK4708	315.37	320.71	5.34	5.26	0.93	0.002	0.34	19.86	0.01	0.02

Table 12.3Skarn-Type Mineralized Intervals in 2009 Drill Holes for the Jiama Project

12.3 Discussion

Copper-polymetallic mineralization in the Jiama Project is sampled by DDH drill holes and a small number of surface trenches. The resource database used for the resource estimates in this ITR consists of 210 DDH holes with a total drilled length of 69,028 m and 10 surface trenches with a total sampled length of 349 m. Drill hole spacing in the central portion of the mineralized zones is 100 m by 100 m, and drill hole spacing in the peripheral zones generally ranges from 200 m to 400 m. The drill hole samples completed by Brigade 6 in the 1990s and by Huatailong in 2008-2009 cover an area of approximately 3,500-m along strike (northwest) and 2,500-m wide along the dip direction (northeast) for the Jiama Project.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Core recovery is generally good, averaging over 95% for the Huatailong DDH holes completed in 2008 to 2009. The 22 DDH holes completed in the 1990s by Brigade 6 have a lower average core recovery of 84%, but they represent less than 10% of the drill hole database.

BDASIA's review indicates that the drilling and sampling for the Jiama Project have been performed in accordance with accepted industry standards, the core samples are representative of the copper-polymetallic mineralization in the deposit and should not produce any material bias for metal grade distribution.

13.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

13.1 Brigade 6 Work in the 1990s

Sample preparation and analysis for the Brigade 6 samples in the 1990s were conducted by the Tibet Central Laboratory of the Ministry of Geology and Mineral Resources of China in accordance with relevant regulations at that time. No detailed information was available for the sample preparation procedures and metal grade determination methods. However, BDASIA believes that the assay results are acceptable based on their similarities with the samples taken in 2008 and 2009 by Huatailong.

13.2 Huatailong Work in 2008 and 2009

Sample preparation and analysis for the Huatailong core samples were undertaken by the Southwestern Metallurgic Geology Analytical Center ("Southwest Center") in Chengdu, Sichuan Province, which is an accredited laboratory by the Chinese National Accreditation Board for Laboratories ("CNAL"). The Southwest Center set up a sample preparation facility in the Huatailong core storage warehouse. Sample preparation was undertaken by the Southwest Center personnel. Samples were prepared by a two-stage crushing and one-stage grinding procedure to reduce the size of sample particles to minus 200 mesh (0.074 mm). Sample splitting was not performed until the particle size was reduced to approximately 1 mm. A ground sample of approximately 400 grams ("g") was sent for analysis in Chengdu; a duplicate ground sample of approximately 500 g as well as the coarse rejects was kept in the core storage warehouse.

Sample analysis was undertaken by the Southwest Center using the standard analytic methods specified in "The Quality Administration Standards for Analysis in Geological and Mineral Resource Laboratories" (DZ0130-94) promulgated by the former Ministry of Geology and Mineral Resources of China. Gold grades were determined by an aqua regia + fluoride digestion, reactivated carbon concentrating, and atomic absorption spectroscopy ("AAS") procedure. Copper, lead, zinc, molybdenum, and silver grades were determined using an aqua regia + hydrofluoric acid + perchloric acid digestion and Inductively Coupled Plasma Atomic Emission Spectrometry ("ICP-AES") or AAS procedure. All samples were analyzed for the above six metals.

Some composite samples were also used to determine the concentration of tungsten, cobalt, nickel, cadmium, tin, gallium, niobium, rhenium, arsenic, antimony, bismuth, mercury, selenium, tellurium, germanium, indium, thallium, and sulfur by ICP-AES and other analytic methods.

None of the Huatailong employees, officers, directors, or associates was involved in the sample preparation. BDASIA considers the sample preparation procedures, analytic method, and security utilized to be appropriate for this type of copper-polymetallic deposit.

14.0 DATA VERIFICATION

14.1 Brigade 6 Work in the 1990s

Assay quality control and quality assurance ("QAQC") programs for the Brigade 6 samples included regular internal check assays, external check assays, and analysis of standard reference materials and blank samples. Assay quality was considered good based on a review conducted by the Tibet Central Laboratory; however, no detailed information was available for BDASIA's review.

14.2 Huatailong Work in 2008 and 2009

QAQC programs for the Huatailong samples included regular internal check assays, external check assays, and analysis of standard reference materials and blank samples.

Within the Southwest Center, all analyses were conducted twice. At the same time, approximately 20% of the samples were randomly selected and were blindly coded with different sample numbers for assay precision control. State standard reference materials and blanks were inserted into every batch of samples by the laboratory to monitor the quality of the analytic results. Work performed will not be credited for the laboratory operator if less than 90% of the samples analyzed meet the quality control requirements in a batch. It was reported that all these measures undertaken have indicated good assay results.

Internal check samples were selected from the duplicate samples by Resource Institute personnel and were coded with different sample numbers blind to the laboratory. A total of 750 internal check samples were analyzed by the Southwest Center in 2008, representing 3.8% of the total analyzed samples in 2008. Internal checks were compared with the original assay results to see if they met the permitted relative deviation ranges specified by the regulations. It was reported that over 93% of the internal checks were within the permitted relative deviation ranges in 2008, which is better than the 80% requirement specified by the regulations. No systematic bias was reported between the original assay results and the internal checks. Figure 14.1 shows the scatter plots of the 2008 original assay results and the internal check assay results.

External check samples were randomly selected from the pulp rejects by Resource Institute personnel and were sent to the State Geologic Laboratory Analytic Center in Beijing for analysis. A total of 695 external check samples were analyzed in 2008, representing 3.6% of the total analyzed samples in 2008. External checks were compared with the original assay results to see if they met the permitted relative deviation ranges specified by the regulations. It was reported that 94% to 99% of the external checks for the six different analyzed metals met the permitted relative deviation ranges in 2008. No systematic bias was reported between the original assay results and the external checks. Figure 14.2 shows the scatter plots of the 2008 original assay results and the external check assay results.

BDASIA has verified the copper-polymetallic mineralization by observing the mineralized drill cores at Huatailong's core storage facility.

To ensure that the analytic results were correctly entered into the computer drill hole database used for resource modeling, BDASIA has randomly selected about 10% of the 2008 drill holes to compare the assay data in the computer database with the scanned copies of the original assay certificates issued by the Southwest Center. The check indicates that all assay data has been correctly entered into the computer database. BDASIA has also verified the internal and external check assay data from the original assay certificates.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Figure 14.1 Scatter plots of original assay results and internal check assay results

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Figure 14.2 Scatter plots of original assay results and external check assay results

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Based on the review of the drilling, sampling, sample preparation, and analysis, as well as QAQC data, BDASIA is of the opinion that assay quality for the 2008 and 2009 samples for the Jiama Project meets industry standards and can be used for estimating the mineral resources present at the project.

15.0 ADJACENT PROPERTIES

There is no publically available information about the other mining properties adjacent to the Jiama Project.

16.0 METALLURGICAL TESTING AND MINERAL PROCESSING

The metallurgical testwork and development of the required processing methods and facilities to treat the Jiama copper-lead and copper-molybdenum ores is described below. The copper-lead ore as part of the mineralization at the upper portion of the Tongqianshan open pit constitutes a very small portion of the Jiama ore reserve, while the copper-molybdenum ore is the primary ore type in the Jiama ore reserve. The project will treat a mixture of both ore types for the initial 2 years of the mine life to produce separate copper, molybdenum and lead concentrates; it will treat only the copper-molybdenum ore after the initial 2 years to produce separate copper and molybdenum concentrates. Economically attractive quantities of gold will be reported with the copper concentrate while some silver will be reported with both the copper and the lead concentrates.

16.1 Metallurgical Testing

Early metallurgical testwork for the Jiama Project was mostly concentrated on the copper-lead ore, which accounts for only a very small portion of the Jiama resource/reserves located at the upper portion of the steeply-dipping ore zone. The testwork on the copper-lead ore was conducted by the Beijing General Research Institute of Mining and Metallurgy ("BGRIMM") in 1990 and 2008, the Chengdu Institute of Multipurpose Utilization of Mineral Resources of Chinese Academy of Geological Sciences, ("CIMUMR") in 2000, and the Beijing General Research Institute for Non-ferrous Metals ("BGRINM") in 2007. Changsha Institute summarized these tests in its December 2009 feasibility study report for the Jiama Project.

The metallurgical testwork on the copper-molybdenum ore was conducted by the Changchun Gold Research Institute ("CGRI") in August 2009. The results of the final test on this ore are also reported in the Changsha Institute December 2009 feasibility study report. The test sample was composited from the coarse rejects of drill core assay samples. The content of metal values corresponded reasonably well to the forecast mill feed. The test sample and test results were satisfactory.

16.1.1 Test Samples

The two main types of ore to be processed during the life of the Jiama operation are the coppermolybdenum ore, with a large reserve, and the copper-lead ore, with a substantially smaller reserve. For the first ore type, the sample for testing was obtained from drill core assay sample coarse rejects. The testwork samples for the second ore type were generally obtained by the channel sampling method from underground mine workings.

The 1990 BGRIMM copper-lead ore test sample was composited from high-grade ore (67.75%), low-grade ore (25.8%), and waste rock (6.45%), with average grades of 0.99% copper,

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

29.14% lead, 6.23% zinc, 344 g/t silver, and 0.39 g/t gold. The lead, zinc, and silver grades for the sample are extremely high and not representative of the ore to be treated by the processing plant at Jiama. Therefore, the 1990 BGRIMM test results are not discussed in this ITR.

Three test samples were collected for the 2000 CIMUMR testwork, representing the copper-lead-zinc ore, lead-zinc ore, and copper-molybdenum ore. The copper-lead-zinc ore sample that was used for metallurgical test had average grades of 0.98% copper, 3.41% lead, 1.42% zinc, 63 g/t silver and 0.42 g/t gold, which are reasonably close to the forecast metal grades of the copper-lead ore for the project. Other elements in the sample include 0.0035% molybdenum, 2.93% sulfur, 9.84% iron, 0.035% arsenic, 0.37% manganese, 34.00% SiO₂, 7.04% Al₂O₃, 27.60% CaO, and 1.52% MgO.

Five samples were collected for the 2007 BGRINM testwork by channel sampling from the underground mined-out areas and from surface ore stockpiles. The copper-lead-zinc ore sample that was used for the metallurgical tests has average grades of 1.28% copper, 3.60% lead, 2.06% zinc, 52 g/t silver, and 0.20 g/t gold, which are reasonably close to the forecast metal grades of the copper-lead ore for the project.

The 2008 BGRIMM copper-lead ore test sample was collected by channel sampling from underground mined-out areas, with average grades of 1.38% copper, 2.37-2.42% lead, 1.08-1.16% zinc, 61.79-64.32 g/t silver, and 0.44-0.47 g/t gold, which are reasonably close to the forecast metal grades of the copper-lead ore for the project.

The 2009 CGRI copper-molybdenum ore test sample composited from drill core assay sample coarse rejects has average grades of 1.02% copper, 0.054% molybdenum, 16.08 g/t silver, and 1.07 g/t gold, which are reasonably close to the forecast average metal grades for the copper-molybdenum ore of the Jiama Project. Other elements in the sample include 0.03% lead, 0.03% zinc, 1.01% sulfur, 8.06% iron, 0.011% arsenic, 1.36% carbon, 44.67% SiO₂, 3.66% Al₂O₃, 18.1% CaO, and 2.86% MgO.

The zinc grade in the tested copper-lead ore samples is moderately high (1.08% to 2.06%), however, the average zinc grade for the mixed copper-lead ore and copper-molybdenum ore is below 0.20%, which is too low to justify separate zinc concentrate production for the Jiama Project. Therefore, no zinc concentrate production is planned in the feasibility study.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

16.1.2 Mineral Composition of Ores

The two types of ores have similar mineral composition. They differ in relative amounts of the minerals present. Table 16.1 shows the mineral composition of the typical ore.

	White a Composition of Stama Of	C
Namo	Metallic Minerals Chomical Formula	Non Matallia Minorals
		Non-Metanic Minerals
Major Minerals		
Chalcopyrite	CuFeS ₂ (34.6% Cu)	Garnet
Bornite	Cu ₅ FeS ₄ (63.3% Cu)	Diopside
Galena	PbS (86.6% Pb)	Plagioclase
Sphalerite	ZnS (67.1% Zn)	Wollastonite
Molybdenite	MoS ₂ (59.9% Mo)	K-Feldspar
Pyrite	FeS ₂ (46.5% Fe)	Quartz
Minor Minerals		
Chalcocite	Cu ₂ S (79.9% Cu)	Chlorite
Enargite	Cu ₃ AsS ₄ (48.4% Cu)	Dolomite
Tetrahedrite	$(Cu,Fe)_{12}Sb_4S_{13}$ (up to 45.8% Cu)	Sericite
Covellite	CuS (66.5% Cu)	Calcite
Native Gold	Au, 100%	Tremolite
Malachite	CuCO ₃ Cu (OH) ₂ (57.5% Cu)	Actinolite
Native Silver	Ag, 100%	
Hematite	Fe_2O_3	
Cobaltite	CoAsS	
Rutile	TiO ₂	

Table 16.1Mineral Composition of Jiama Ore

Chalcopyrite is embedded in rock-forming minerals and together with galena, sphalerite, and pyrite. It may be deposited between gangue minerals in irregular shapes. Small amounts of chalcopyrite occur as inclusions in sphalerite measuring 0.001 to 0.1 mm in size.

Galena is found in chalcopyrite-bornite-galena-sphalerite ore, primarily embedded with sphalerite and chalcopyrite. It appears in irregular shapes or is disseminated in gangue minerals.

Sphalerite, along with galena, chalcopyrite, and bornite, is disseminated in gangue minerals in irregular shapes, or is found as interrupted veinlets along fractures or between gaps of gangue minerals together with galena and chalcopyrite.

Molybdenite is present mostly in tabular form but may be embedded in or wrapped by gangue minerals. Its distribution among different types of ore is uneven. Its size generally varies between 0.01 and 0.05 mm.

Gold is found mostly as native gold with a grain size generally between 0.01 and 0.03 mm, the largest being 0.1 mm. It occurs mostly within tetrahedrite, bornite, and gangue minerals.

Silver is found as either native silver or silver telluride. It is generally directly correlated with lead.

The elements with economic values in the deposit include copper, molybdenum, lead, zinc, gold, and silver. Deleterious elements include arsenic and magnesium, but their contents are generally low.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

16.1.3 Tests and Results

The summaries of the testwork results obtained from the copper-lead ore are presented in Table 16.2. Tests T1 and T2 compare the selective flotation approach with bulk flotation, followed by separation approach. Of the two approaches, the bulk flotation/separation method yielded a higher copper concentrate grade (29.11% Cu) than the selective flotation method (23.45% Cu) at similar copper recoveries for both approaches. The lead concentrate grades were similar. However, the lead recovery obtained using the bulk flotation method (90.27% Pb) was substantially higher than that for the selective flotation method (80.54% Pb). The silver assay and recovery in the lead concentrate were also significantly higher (990.0 g/t and 91.51% vs. 749.5 g/t and 64.57%) for the bulk flotation approach has been selected for the Jiama Project as the method will yield significantly higher net smelter returns.

Test Identifier	T1	Τ2	Т3	Τ4	Т5
Performed by	CIMUMR, 2000	BGRINM, 2007	BGRIMM, 2008	BGRIMM, 2008	BGRIMM, 2008
Flotation Approach	Bulk Cu-Pb, then Cu-Pb separation	Selective Cu-Pb flotation; locked cycle test	Bulk Cu-Pb, then Cu-Pb separation; 100% fresh water; locked cycle test	Bulk Cu-Pb, then Cu-Pb separation; 50% fresh water; locked cycle test	Bulk Cu-Pb, then Cu-Pb separation; 15% fresh water; locked cycle test
Feed Assay					
Cu %	0.98	1.28	1.38	1.38	1.38
Pb %	3.41	3.60	2.38	2.42	2.37
Ag g/t	52.47	52.0	64.32	63.85	61.79
Au g/t	—	0.20	0.47	0.44	0.44
Copper Conc. Assay					
Cu %	29.11	23.45	27.67	28.66	28.11
Ag g/t	39.44	274.3	785.0	762.0	736.0
Au g/t		3.49	6.45	6.20	5.96
Copper Conc. Recoveries					
Cu %	85.04	85.88	91.90	90.13	89.24
Ag %	2.14	24.74	55.81	51.92	52.16
Au %		81.84	62.66	61.86	59.97
Lead Conc. Assay					
Pb %	63.55	64.72	66.04	62.79	63.07
Ag g/t	990.00	749.5	742.0	785.0	735.0
Au g/t		0.47	0.69	0.76	0.72
Lead Conc. Recoveries					
Pb %	90.27	80.54	84.44	83.63	86.75
Ag %	91.51	64.57	33.13	39.64	38.71
Au %		10.53	4.46	5.62	5.38

 Table 16.2

 Summary of Flotation Test Results for Copper-Lead Ore

The effect of water recycling on the copper-lead bulk flotation then separation process was tested (Tests T3, T4, and T5) by BGRIMM in 2008. The test results were rather similar, taking into account possible experimental errors. However, it appears that the results obtained when using 100% fresh process water may have an edge over the fresh/recycled mix. Therefore, a recycled water treatment plant is necessary to improve the quality of the process water in general.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

The copper-molybdenum processing approach of bulk flotation first followed by bulk concentrate regrinding and flotation separation of molybdenum from copper is well known and used in the majority of similar operations worldwide. This approach was successfully tested by CGRI in 2009, and the obtained test results are presented in Table 16.3.

Item	Paran	neter
Feed Assay		
Cu %	1.	05
Mo %		54
Au g/t	1.	07
Ag g/t		08
Copper Concentrate Assay		
Cu %		11
Mo %		22
Au g/t		65
Ag g/t		1.7
Copper Concentrate Recoveries		
Cu %		22
Mo %	12.	50
Au %	47.	88
Ag %		30
Molybdenum Concentrate Assay		
Cu %		02
Mo %		71
Au g/t		
Ag g/t	••••••	
Molybdenum Concentrate Recoveries		
Cu %		24
Mo %		20
Au %		
Ag %		

Table 16.3 Summary of Flotation Test Results for Copper-Molybdenum Ore

Both ore types will be ground to 70% minus 0.074 mm before flotation. The copper-lead flotation reagents comprise lime, xanthate collectors BK 204, BK 809, and BK 908, zinc sulfate, sodium sulfide, activated carbon, and alcohol-type frothers. The reagents for copper-molybdenum flotation ore comprise sodium silicate, sodium sulfide, No.2 diesel oil, butyl xanthates, kerosene, and frothers. All these reagents are fairly typical for the ores being studied and are readily available in China.

Results of chemical analyses of primary components of copper and lead concentrates produced by the 2008 BGRIMM testwork on copper-lead ore and copper and molybdenum concentrates produced by the 2009 CGRI testwork on copper-molybdenum ore are given in Table 16.4. BDASIA notes that analyses of nickel, bismuth, and antimony for concentrates are not available from the table.

Based on the preliminary copper concentrate sales agreement signed between Huatailong and a major smelter customer, the specifications for copper concentrate are Cu \geq 18%; Ni \leq 1.5%; As \leq 0.5%; Pb+Zn \leq 8.0%; Bi+Sb \leq 0.5%; MgO \leq 4.0. Copper concentrate produced by the 2009 CGRI testwork on

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

the copper-molybdenum ore generally meets these specifications, although nickel, bismuth, and antimony contents in the copper concentrate are unknown.

No molybdenum and lead concentrate sales agreements have been signed by Huatailong; therefore, the commercial specifications for molybdenum and lead concentrates for the Jiama Project are unknown. BDASIA considers it important to obtain the commercial specifications for molybdenum and lead concentrates as soon as possible.

Testwork	BGRIMM, 2008 Copper-Lead		CGRI, 2009 Copper-Molybdenum		
Ore Type					
Concentrate Type	Copper	Lead	Copper	Molybdenum	
Cu (%)	28.66	2.11	32.11	3.02	
Pb (%)	6.98	62.79	0.438	0.158	
Zn (%)	1.64	4.08	0.643	0.053	
Mo (%)	0.10	0.051	0.220	47.71	
S (%)	29.40	16.76	23.66	35.43	
Fe (%)	22.12	5.12	16.64	2.32	
WO ₃ (%)	0.094	0.074	_	_	
As (%)	0.81	0.068	0.07	0.26	
Mn (%)	0.016	0.040	_	_	
SiO ₂ (%)	1.33	3.72	12.46	4.59	
$Al_2O_3(\%)$	0.14	0.32	0.98	0.36	
Ca (%)	0.76	2.49	8.23(CaO)	2.22(CaO)	
Mg (%)	0.096	0.23	2.87(MgO)	3.52(MgO)	
Au (g/t)	6.20	0.76	16.65	_	
Ag (g/t)	762	785	351.70	—	

 Table 16.4

 Chemical Analyses of Flotation Concentrates Obtained from the Testwork

16.2 Mineral Processing

16.2.1 Plant Design

The mineral processing facilities for the Jiama Project were designed by the Changsha Institute and were presented in the December 2009 feasibility study report. The bases for the design comprised the metallurgical testwork results by well-regarded Chinese mining and metallurgical institutes (including BGRIMM, CIMUMR, BGRINM, and CGRI) as well as the sets of principles, regulations, and safety codes required by law.

The facilities required to treat a total of 12,000 tpd or 3.6 Mtpa of ore when in full production will be brought on stream in two phases. The first 6,000-tpd phase was near completion during BDASIA's site visit in December 2009; it was put into trial production in July 2010 and commercial production started in September 2010. Construction of the second 6,000-tpd plant is expected to start in December 2010; production from the second phase plant will likely be delayed beyond the original plan (starting production in early 2011 and ramping up to full production capacity at the end of 2011). The two plants will be physically separated by a valley and independent of each other except for the shared concentrate dewatering system and power substation.

The plants will operate 300 days per year, in three shifts of 6 hours each for crushing, concentrate dewatering, and tailings filtering and 8 hours each for flotation and tailing thickening.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

16.2.2 Process and Flowsheet Description

The processing of the Jiama ores is based on the 2008 BGRIMM testwork on the copper-lead ore and 2009 CGRI testwork on the copper-molybdenum ore, as well as the sound and modern practices employed on similar ores elsewhere in China and worldwide. The flowsheet presented in Figure 16.1 shows the basic processing steps, i.e. crushing and screening; grinding and classification; bulk flotation roughing, cleaning, and scavenging; separation of concentrates by flotation; and thickening and filtration as the final stages in the finished concentrate production.

Figure 16.1 Processing Flowsheet for the Jiama Ore

The processing is described as follows:

The Jiama ores, a mixture of both copper-lead ore and copper-molybdenum ore for the initial 2 years of the mine life and copper-molybdenum ore alone thereafter, will be treated in the same plant, using the same equipment. Changes in the pulp flows and flotation reagent types will accommodate the differences in ore types and process requirements.

The run-of-mine ore will be crushed in three stages to the size of minus 12 mm. A jaw crusher, in an open circuit, will perform the primary crushing. Gyratory crushers in a closed circuit with a 12-mm screen will perform the secondary and tertiary crushing. The crushed, minus 12-mm ore will be ground in ball mills operating in a closed circuit with a battery of cyclones. The cyclone underflow (sand) will be returned to the ball mills. The overflow (fines), sized at 70% -0.074 mm, will be sent to conditioning, where the ground ore is prepared for flotation by reagents introduction.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

The first flotation stage is the bulk rougher flotation of copper, lead, and molybdenum minerals from the mixture of copper-lead and copper-molybdenum ores in the initial 2 years of mine life (copper and molybdenum in the case of the copper-molybdenum ore thereafter). This stage yields two products: rougher bulk concentrate and rougher tail. The tail is scavenged, and its concentrate is sent back to the bulk rougher flotation head, while the tail of this stage is the final plant tail, which is thickened and filtered. The water from thickening and filtering is recovered for reuse in the plant, and the filtered cake is transported to a tailing disposal site by a conveyor system (a portion of the tails will be used for stope backfill when the underground mining is in operation starting in 2012). The bulk rougher flotation concentrate is cleaned, and the cleaner tail is pumped back to the rougher head. The bulk cleaner concentrate is then subjected to separation into the lead concentrate and bulk copper-molybdenum concentrates.

The separation into lead concentrate and bulk copper-molybdenum concentrate begins with thickening of the bulk concentrate, followed by two stages of conditioning with required reagents. The flotation separation yields the final lead concentrate and the bulk copper-molybdenum concentrate. The bulk copper-molybdenum concentrate is then reground to 90% minus 0.045 mm, conditioned, and then separated into copper concentrate and molybdenum concentrate. Multiple cleaner stages in column flotation and standard flotation cells are used to produce the final copper and molybdenum concentrates, after dewatering and bagging, are ready for shipping.

16.2.3 Equipment

The major pieces of equipment to be employed in each of the two 6,000-tpd plants comprise a C110 jaw crusher for primary crushing, an HP4-EC Ultra Coarse standard gyratory crusher, and an HP500C Coarse short-head gyratory crusher for secondary and tertiary crushing. These crushers are imported equipment.

Three double-deck vibrating screens (2YKR2460) will be used for screening of the crushed product. The minus 12-mm size will be ground in two \emptyset 4000×8000-mm ball mills working in a closed circuit with two batteries of \emptyset 500×6-mm hydrocyclones. The rougher flotation is carried out in 35 40-m³ cells, the cleaning in 60 4-m³ cells. Prior to copper-molybdenum separation, the bulk copper-molybdenum cleaner concentrate is reground in a \emptyset 1500×3000-mm ball mill working in a closed circuit with a battery of \emptyset 250×4-mm hydrocyclones. Copper and molybdenum separation takes place in 2.5×12-m, 0.9×12-m, and \emptyset 0.6×12-m flotation columns. Copper concentrate is thickened in a \emptyset 30-m thickener, lead concentrate in a \emptyset 18-m thickener, and molybdenum concentrate in a \emptyset 9-m thickener. These thickened concentrates are filtered in a 36-m² ceramic filter, a 21-m² ceramic filter, and a 20-m² pressure filter, respectively. The molybdenum concentrate filter cake is additionally dewatered in a 20-m² vacuum dryer. The two tailings thickeners are \emptyset 60-m each, and the thickened tailings are filtered on 8 600-m² pressure filters. The equipment is all Chinese made.

16.2.4 Concentrate Production and Processing Recoveries

Based on the December 2009 Changsha Institute feasibility study report, three concentrates (copper, lead, and molybdenum) will be produced for the initial 2 years of the mine life when the processing plants treat a mixture of the copper-lead ore and the copper-molybdenum ore. Only two concentrates (copper and molybdenum) will be produced thereafter when the plants treat the copper-molybdenum ore alone.

APPENDIX V-B INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

The final copper concentrate is expected to assay approximately 26% copper. Copper recovery is expected to be approximately 90% when average copper grade of the processed ore is at least 0.8% and to be approximately 85% when the copper grade of the ore is less than 0.8%.

The final lead concentrate is expected to assay 60% lead at a lead recovery of 80% when the lead grade of the ore is at least 0.3%. No lead concentrate will be produced when the ore lead grade is less than 0.3%.

The final molybdenum concentrate is expected to assay 45% molybdenum and will recover approximately 70% of the molybdenum when the molybdenum grade of the ore is at least 0.011%.

Gold will be recovered in the copper concentrate only, with an expected recovery of approximately 50%. The gold grade in the copper concentrates is expected generally to range from 5 g/t to 6 g/t.

Silver will be recovered to both copper and lead concentrates. Silver recovery is expected to be 50% to the copper concentrate and 35% to the lead concentrate when both copper and lead concentrates are produced. Silver recovery is expected to be 80% to the copper concentrate when no lead concentrate is produced. The silver grade is expected generally to range from 300 g/t to 500 g/t in the copper concentrate and above 500 g/t in the lead concentrate.

17.0 MINERAL RESOURCE AND ORE RESERVE ESTIMATES

The Australasian JORC Code is a mineral resource/ore reserve classification system that is widely used and is internationally recognized. It has been used previously in ITRs for mineral resource and ore reserve statements for other Chinese companies reporting to SEHK. The JORC Code is used by BDASIA to report the mineral resources and ore reserves of the Jiama Project in this ITR. Mineral resources, inclusive of reserves, and mineral reserves have been reconciled to the CIM Standards, and are exactly the same as mineral resources and ore reserves under the JORC Code.

Generally, ore reserves are quoted as comprising part of the total mineral resource, rather than the mineral resources being additional to the ore reserves quoted. The JORC Code allows for either procedure, provided the system adopted is clearly specified. In this BDASIA ITR, all of the ore reserves are included within the mineral resource statements.

17.1 Mineral Resource Estimates

Current mineral resources of the Jiama Project were estimated by Qualified Person Dr. Qingping Deng of BDASIA, using MineSight computer mining software, the drill hole database as of the end of October 2009, and the Jiama geological model produced by the Resource Institute geologists. The database, procedures, and parameters used and the results of the resource estimation are summarized below.

17.1.1 Database used for Resource Modelling

The drill hole database used for the current Jiama Project resource model is summarized in Table 17.1. It consists of a total of 210 DDH holes with a total drilled length of 69,029 m and 10 surface trenches with a total length of 349 m.

Table 17.1

Drill Hole Database used for Jiama Project Resource Estimation

Drilling Campaign	Number	Total Meters
1990s No. 6 Brigade DDH Holes	22	6,518
1990s No. 6 Brigade Surface Trenches	10	349
2008 Huatailong DDH Holes	148	48,970
2009 Huatailong DDH Holes	_40	13,541
Total	220	69,378

These holes were drilled on exploration lines oriented at a N30°E direction and at a line spacing of 100 m or 200 m. Drill hole spacing on the exploration lines is approximately 100 m, 200 m, or 400 m, with the drill hole spacing at the central portions of the deposit at approximately 100 m by 100 m, increasing to 200 m by 100 m, 200 m by 200 m, or 400 m by 400 m toward the peripheries of the deposit. The database contains 26,606 assay intervals, with grades for copper, molybdenum, gold, silver, lead, and zinc.

Topography used for the resource estimation was based on a 1:2000 topographic survey completed by the Resource Institute in 2008.

Bulk density measurements were conducted on selected drill cores and underground/surface rock samples by Brigade 6 in the 1990s and by the Resource Institute in 2008. A total of 217 core and rock samples were measured by Brigade 6 in the 1990s, using the industry standard wax-coating displacement method. An average bulk density for the 136 samples from the skarn-type mineralized zone was 3.068 t/m³. The other 81 samples were host rocks (including slates, marbles, limestones, and dikes) to the mineralization. A total of 228 core samples and 100 underground rock samples were used for bulk density measurements by the Resource Institute in 2008, using the industry standard wax-coating displacement method. An average bulk density of the 248 skarn-type mineralized samples taken in 2008 and the 136 mineralized samples taken by Brigade 6 in the 1990s was 3.115 t/m³, with a range from 2.042 to 4.889. The other 80 samples taken in 2008 were hornfels-type mineralized samples with an average bulk density of 2.842 t/m³ and a range from 2.074 to 4.039. The bulk density used for the current resource estimation is 3.115 t/m³ for the skarn-type mineralization and 2.842 t/m³ for the hornfels-type mineralization.

17.1.2 Procedures and Parameters Used for the Skarn-Type Resource Modelling

The following procedures and parameters were used in the current resource estimation for the skarn-type mineralization of the Jiama Project:

• **Geological Modeling**: Geological modeling was performed by the Resource Institute geologists using the Micromine mining software. The mineralized zones were modeled by a grade envelope at the cutoff grade of 0.3% Cu, or 0.03% Mo, or 1% Pb or 1% Zn. The minimum mineralized zone thickness is 2 m. Results of the geological modeling show that
INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

the deposit consists of a primary mineralized body (referred to as the I-1 mineralized body) and seven smaller mineralized bodies (referred to as the I-2 to I-8 mineralized bodies). The I-1 mineralized body strikes at an approximately 120° azimuth and dips to the northeast. The upper portion of the zone has a steep dip angle averaging approximately 60° and the lower portion of the zone is flatter with an average dip angle of approximately 10°. The I-1 mineralized body is approximately 2,400-m long along strike and 150-m to 1,900-m wide in the dip direction, and its thickness ranges from less than 5 m to more than 200 m (Figures 9.1 and 17.1). It occupies over 97% of the mineralized volume for the entire deposit. This mineralized body is hosted by skarns distributed along an interlayer structural zone between underlying marbles and overlying hornfels and is believed to be formed along a detachment structural zone. Mineralization in this zone is still open in many places, especially along the down-dip direction, indicating significant additional exploration potential. Although this mineralized zone is very extensive, metal grade distribution in the zone is quite variable. In general, the upper portion of the mineralized body is copper rich, and the lower portion of the body is molybdenum rich. Lead with some zinc is enriched locally at the upper portion of the zone. As the primary mineralized zone strikes at a 120° azimuth, the coordinate system for the drill hole database was rotated counter-clockwise 30° to align the east-west axis of the rotated coordinate system with the strike of the mineralization for the resource model.

Figure 17.1 Sectional view of the I-1 mineralized body for the Jiama Project (The view is looking at 270° rotated azimuth and is on Exploration Line 16.)

• Metal Grade Statistical Analysis and Grade Capping: A total of 7,314 assay intervals with a total length of 7,847 m are located inside the defined mineralized envelopes for the Jiama Project. Therefore, the average assay interval length inside the mineralized envelopes is 1.07 m. Original length-weighed metal grade statistics of these assay intervals are summarized in Table 17.2. Based on metal grade probability distribution (Figure 17.2), the capping grade determined for the Jiama deposit is 10% for copper, 0.75% for molybdenum, 6 g/t for gold, 190 g/t for silver, 21% for lead, and 7% for zinc. Samples

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

with metal grades above the capping grades are considered outliers, and these outlier metal grades were replaced by the capping grades before compositing, variography analysis, and grade estimation. Table 17.3 summarizes the capped length-weighted metal grade statistics.

Table	17.2
-------	------

Original Length-Weighted Metal Assay Grade Statistics inside the Mineralized Zones

Metal	Number of Samples	Length (m)	Mean	Standard Deviation	Minimum	Maximum	Coefficient of Variation
Cu (%)	7,314	7,847	0.72	1.56	0	49.28	2.18
Mo (%)	7,314	7,847	0.043	0.112	0	5.13	2.60
Au (g/t)	7,314	7,847	0.26	1.35	0	98.7	5.27
Ag(g/t)	7,314	7,847	14.3	32.3	0	1,041	2.26
Pb (%)	7,314	7,847	0.16	1.23	0	39.93	7.83
Zn (%)	7,314	7,847	0.08	0.50	0	14.28	6.18

Table 17.3

Capped Length-Weighted Metal Assay Grade Statistics inside the Mineralized Zones

Metal	Number of Samples	Length (m)	Mean	Standard Deviation	Minimum	Maximum	Coefficient of Variation
Cu (%)	7,314	7,847	0.69	1.18	0	10	1.71
Mo (%)	7,314	7,847	0.042	0.089	0	0.75	2.13
Au (g/t)	7,314	7,847	0.23	0.54	0	6	2.36
$\operatorname{Ag}(g/t)$	7,314	7,847	13.7	25.5	0	190	1.86
Pb (%)	7,314	7,847	0.15	1.07	0	21	7.11
Zn (%)	7,314	7,847	0.08	0.43	0	7	5.51

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Figure 17.2 Metal grade probability distribution and capping grade determination for the Jiama Project

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

• **Compositing**: Capped metal assays inside the mineralized envelopes were composited to 5-m fixed-length composites, and composites less than 1-m long were merged into the previous 5-m composite. A total of 1,434 composites were produced inside the mineralized envelopes. Capped length-weighted metal grade statistics for the composites are summarized in Table 17.4.

Number of Samples	Length (m)	Mean	Standard Deviation	Minimum	Maximum	Coefficient of Variation
1,673	7,847	0.69	0.87	0	10.00	1.27
1,673	7,847	0.042	0.066	0	0.604	1.57
1,673	7,847	0.23	0.40	0	4.83	1.75
1,673	7,847	13.7	19.6	0	186.4	1.43
1,673	7,847	0.15	0.86	0	21.00	5.77
1,673	7,847	0.08	0.31	0	5.36	4.05
	Number of Samples 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673 1,673	Number of SamplesLength (m)1,6737,8471,6737,8471,6737,8471,6737,8471,6737,8471,6737,8471,6737,8471,6737,847	Number of SamplesLength (m)Mean1,6737,8470.691,6737,8470.0421,6737,8470.231,6737,84713.71,6737,8470.151,6737,8470.08	Number of SamplesLength (m)MeanStandard Deviation1,6737,8470.690.871,6737,8470.0420.0661,6737,8470.230.401,6737,84713.719.61,6737,8470.150.861,6737,8470.150.86	Number of SamplesLength (m)MeanStandard DeviationMinimum1,6737,8470.690.8701,6737,8470.0420.06601,6737,8470.230.4001,6737,84713.719.601,6737,8470.150.8601,6737,8470.150.860	Number of SamplesLength (m)MeanStandard DeviationMinimumMaximum1,6737,8470.690.87010.001,6737,8470.0420.06600.6041,6737,8470.230.4004.831,6737,84713.719.60186.41,6737,8470.150.86021.001,6737,8470.080.3105.36

Table 17.4

Capped Length-Weighted 5-m Length Skarn Composite Metal Grade Statistics

Variography: As the modeled mineralized zones have a steep dip angle at the upper portion and a flat dip angle at the lower portion, the mineralized zones were divided into an upper, steeply-dipping domain and a lower, flatter domain for the purpose of variogram modeling and grade estimation. Correlograms, instead of traditional variograms, were modeled for the 5-m length composite metal grades inside the defined I-1 mineralized body for each domain (Table 17.5 and Figures 17.3 and 17.4). It should be noted that the azimuths in Table 17.5 and Figures 17.3 and 17.4 all refer to the rotated azimuth. As all the holes were drilled vertically on a regular drilling grid from 100 m to 400 m, it is difficult to produce good correlogram models in any directions other than the vertical direction (or the down-hole direction). The correlogram models generally show a moderate relative nugget at around 0.5 (indicating nearby samples have a reasonable grade similarity) and a correlogram range for the primary direction, or the strike of the mineralization, between 105 m to 200 m. Correlograms in the vertical direction were modeled to simulate the correlograms in the minor direction, and it was assumed that the correlogram range in the minor direction is 80% of the vertical correlogram range for the flatter domain and 60% of the vertical correlogram range for the steep-dip domain.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Metal	Direction	Azim	Dip	Window	Lag	C ₀	C ₁	a ₁
		Flatter Mineralized	Domai	n				
	major	270°	0°	15°	50 m			145 m
Au	semi-major	0°	-10°	20°	80 m	0.55	0.45	138 m
	minor	0°	-90°	20°	10 m			40 m
	major	270°	0°	15°	50 m			158 m
Ag	semi-major	0°	-10°	20°	80 m	0.50	0.50	132 m
	minor	0°	-90°	20°	10 m			40 m
	major	270°	0°	15°	50 m			150 m
Cu	semi-major	0°	-10°	20°	80 m	0.45	0.55	135 m
	minor	0°	-90°	20°	10 m			35 m
	semi-major	270°	0°	15°	50 m			110 m
Mo	major	0°	-10°	20°	80 m	0.45	0.55	145 m
	minor	0°	-90°	20°	10 m			32 m
	major	270°	0°	15°	50 m			122 m
Pb	semi-major	0°	-10°	20°	80 m	0.48	0.52	118 m
	minor	0°	-90°	20°	10 m			25 m
	major	270°	0°	15°	50 m			200 m
Zn	semi-major	0°	-10°	20°	80 m	0.55	0.45	100 m
	minor	0°	-90°	20°	10 m			25 m
	Stee	ply-Dipping Minera	lized Do	omain				
	major	270°	0°	20°	50 m			135 m
Au	semi-major	0°	-60°	20°	30 m	0.45	0.55	125 m
	minor	0°	-90°	20°	10 m			50 m
	semi-major	270°	0°	20°	50 m			125 m
Ag	major	0°	-60°	20°	30 m	0.48	0.52	155 m
•	minor	0°	-90°	20°	10 m			48 m
	semi-major	270°	0°	20°	50 m			120 m
Cu	major	0°	-60°	20°	30 m	0.50	0.50	140 m
	minor	0°	-90°	20°	10 m			52 m
	semi-major	270°	0°	20°	50 m			115 m
Мо	major	0°	-60°	20°	30 m	0.58	0.42	120 m
	minor	0°	-90°	20°	10 m			30 m
	major	270°	0°	20°	50 m			125 m
Pb	semi-major	0°	-60°	20°	30 m	0.58	0.42	125 m
	minor	0°	-90°	20°	10 m			55 m
	major	270°	0°	20°	50 m			125 m
Zn	semi-major	0°	-60°	20°	30 m	0.50	0.50	105 m
	minor	0°	-90°	20°	10 m			40 m

 Table 17.5

 Correlogram Models for the I-1 Mineralized Body of the Jiama Project

Notes:

 $C_0 - {\rm correlogram\ nugget, C_1} - {\rm correlogram\ sill, and} \ a_1 - {\rm correlogram\ range.}$

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Figure 17.3 Correlogram models for the flatter domain of the I-1 mineralized body

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Figure 17.4 Correlogram models for the steep-dip domain of the I-1 mineralized body

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

- Block Model Definition: A 3-D block model with a block size of 10×10×10 m was defined for the Jiama Project. The mineralized envelopes were coded to the block model using the partial block method, i.e., a block is considered inside the mineralized envelope if any part of the block is located inside the mineralized envelope and the percentage of the block inside the mineral envelope is recorded for resource summary purpose. A volume check was conducted by comparing the mineralized envelope volume and the 3-D block volume, with a negligible difference.
- **Grade Estimation**: Block grade estimation was conducted using a three-pass ordinary kriging ("OK") procedure. The base search ellipsoid radius was defined by 90% of the copper correlogram range in each domain, which was used for the second-pass OK grade estimation. The search radius for the first-pass was 60% of the base search radius, and the search radius for the third-pass was two times the base search radius. The number of 5-m composites used for the first and second passes ranged from four to ten, with a maximum of three composites from any single drill hole or surface trench. The number of 5-m composites used for the third-pass ranged from two to ten, with a maximum of three composites from any single drill hole or surface trench.
- **Resource Classification**: Model blocks were classified into measured, indicated, and inferred resources under the JORC Code. All blocks with a pass one grade estimation were classified as measured; all blocks with a pass two grade estimation were classified as indicated; and all blocks with a pass three grade estimation were classified as inferred (Figure 17.5).

Color code for resource classes (red — measured; blue — indicated; green — inferred)

Figure 17.5 Resource classification for the Jiama Project resource model (The view is looking at 270° rotated azimuth and is on Exploration Line 16.)

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

- Validation: Global grade bias was checked by generating a nearest neighbor ("NN") block grade model. It is generally considered that the overall average grade at the zero cutoff grade for grade estimation should be very close to the overall average NN model grade. For the 119,741 model blocks with grade estimation, the average OK grade at the zero cutoff grade is within a 2% difference of the average NN grade for copper, molybdenum, gold, and silver, indicating there is generally no global grade bias in the OK resource model for these metals. The average OK grade is 3.5% lower and 7.5% higher than the average NN grade for lead and zinc, respectively, indicating there might be some negative or positive grade biases for the two metals. As lead and zinc generally have very low grades in most parts of the deposit, their mining potential is generally limited to the near-surface portion at the southwest of the I-1 mineralized body. Therefore, these negative and possible grade biases should not produce a material impact on the project. Local grade bias was checked by posting the block grades and composite grades on a computer screen on sections and plans, indicating the block grades are generally similar to the nearby composite grades, with a reasonable amount of smoothing (Figures 17.6, 17.7 and 17.8).
- Mined-out areas: The Resource Institute conducted a systematic survey of the adits produced by the four previous operators before the consolidation of the property. A total of 64 adits were surveyed, of which 24 were for exploration purposes only and had no mining stopes. The other 40 adits were for mining purpose and have mined-out stopes. Based on the survey results, the total mined-out volume from stopes in the 40 surveyed adits is approximately 397,000 m³. The mined-out areas are all located in the skarn mineralized zone; therefore, the skarn-type mineralization bulk density of 3.115 t/m³ was used to calculate the mined-out tonnage of approximately 1.236 million tonnes ("Mt"). The stopes were distributed at MSL elevations ranging from 4,600 m to 4,950 m and between Exploration Lines 7 and 96. Based on the previous estimation (Section 6.0 of this ITR), the consumed resources by the four operators to the end of June 2006 (December 2005 for one property) totaled approximately 377,200 t. Considering these mining operations were terminated at April 1, 2007 and some additional ore was mined out between June 2006 (or December 2005 for one property) and April 1, 2007, BDASIA believes that the mined-out tonnages based on the Resource Institute's survey results are reasonable estimates of the mineral resources consumed by historical mining for the Jiama Project. These mined out tonnages were allocated to 50-m levels and were deducted from the current resource model.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Copper (grade range by color: magenta >=2.00%; red 1.00% - 1.99%; blue 0.50% - 0.99%; green 0.30% - 0.49%; white 0.00% - 0.29%; black no assays)

Molybdenum (grade range by color: magenta >=0.200%; red 0.100% - 0.199%; blue 0.050% - 0.099%; green 0.030% - 0.049%; white 0.000% - 0.029%; black no assays)

Figure 17.6 Comparison of OK model block grades and composite grades on a cross section (The view is looking at 270° rotated azimuth and is on Exploration Line 16.)

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Gold (grade range by color: magenta >=2.00 g/t; red 1.00 - 1.99 g/t; blue 0.50 - 0.99 g/t; green 0.30 - 0.49 g/t; white 0.00 - 0.29 g/t; black no assays)

Silver (grade range by color: magenta >=50.0 g/t; red 20.0 - 49.9 g/t; blue 10.0 - 19.9 g/t; green 5.0 - 9.9 g/t; white 0.00 - 4.9 g/t; black no assays)

Figure 17.7 Comparison of OK model block grades and composite grades on a cross section (The view is looking at 270° rotated azimuth and is on Exploration Line 16.)

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Lead (grade range by color: magenta >=4.00%; red 2.00% - 3.99%; blue 1.00% - 1.99%; green 0.50% - 0.99%; white 0.00% - 0.49%; black no assays)

Zinc (grade range by color: magenta >=4.00%; red 2.00% - 3.99%; blue 1.00% - 1.99%; green 0.50% - 0.99%; white 0.00% - 0.49%; black no assays)

Figure 17.8 Comparison of OK model block grades and composite grades on a cross section (The view is looking at 270° rotated azimuth and is on Exploration Line 16.)

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

17.1.3 Procedures and Parameters Used for the Hornfels-Type Resource Modelling

The following procedures and parameters were used in the current resource estimation for the hornfels-type mineralization of the Jiama Project:

- **Geological Modeling**: Geological modeling was performed by the Resource Institute geologists using Micromine mining software. The mineralized zones were modeled by a grade envelope at the cutoff grade of 0.3% Cu, or 0.03% Mo, or 1% Pb or 1% Zn. The minimum mineralized zone thickness is 2 m. Results of the geological modeling show that the hornfels-type mineralization is likely to consist of a large, massive mineralized body (Figure 9.2), over 1,500 m long, up to 1,000 m wide and up to 820 m thick. In general, the upper portion of the mineralized body is copper rich, and the lower portion of the body is molybdenum rich.
- Metal Grade Statistical Analysis and Grade Capping: A total of 3,434 assay intervals with a total length of 6,017 m are located inside the defined hornfels-type mineralized envelopes for the Jiama Project. Therefore, the average assay interval length inside the hornfels-type mineralized envelopes is 1.75 m. Original length-weighed metal grade statistics of these assay intervals are summarized in Table 17.6. No Capping was conducted on the hornfels-type mineralization as all the assay grades are below the capping grades for the skarn-type mineralization.

Table 17.6

Original Length-Weighted Metal Assay Grade Statistics inside the Hornfels-Type Mineralized Zones

Metal	Number of Samples	Length (m)	Mean	Standard Deviation	Minimum	Maximum	Coefficient of Variation
Cu (%)	3,434	6,017	0.21	0.17	0.00	5.27	0.78
Mo (%)	3,434	6,017	0.025	0.037	0.000	0.540	1.43
Au (g/t)	3,434	6,017	0.02	0.11	0.00	4.14	4.86
Ag (g/t)	3,434	6,017	1.1	0.9	0.4	20.4	0.76
Pb (%)	3,434	6,017	0.00	0.01	0.00	0.21	2.49
Zn (%)	3,434	6,017	0.01	0.01	0.00	0.30	1.55

• **Compositing**: Metal assays inside the mineralized envelopes were composited to 5-m fixed-length composites, and composites less than 1-m long were merged into the previous 5-m composite. A total of 1,217 composites were produced inside the hornfels-type mineralized envelopes. Length-weighted metal grade statistics for the composites are summarized in Table 17.7.

Table 17.7

Length-Weighted 5-m Length Hornfels Composite Metal Grade Statistics

Metal	Number of Samples	Length (m)	Mean	Standard Deviation	Minimum	Maximum	Coefficient of Variation
Cu (%)	1,217	6,017	0.21	0.13	0.01	2.28	0.62
Mo (%)	1,217	6,017	0.026	0.029	0.000	0.312	1.15
Au (g/t)	1,217	6,017	0.02	0.09	0.00	3.10	4.21
Ag (g/t)	1,217	6,017	1.1	0.6	0.5	7.7	0.56
Pb (%)	1,217	6,017	0.00	0.01	0.00	0.08	1.97
Zn (%)	1,217	6,017	0.01	0.01	0.00	0.09	1.28

- Block Model Definition: A 3-D block model with a block size of 10×10×10 m was defined for the hornfels-type mineralization at the Jiama Project. The mineralized envelopes were coded to the block model using the majority rule method, i.e., a block is considered inside the mineralized envelope if more than 50% of the block is located inside the mineralized envelope. A volume check was conducted by comparing the mineralized envelope volume and the 3-D block volume, with a negligible difference.
- **Grade Estimation**: Block grade estimation was conducted using the inverse-distance to the second power ("ID2") procedure. The search ellipsoid radius was 300 m long horizontally and 100 m long vertically. The number of 5-m composites used for the grade estimation ranged from two to sixteen, with a maximum of four composites from any single drill hole.
- **Resource Classification**: All hornfels model blocks were classified as inferred resources under the JORC Code as the hornfels-type mineralization is currently only defined by widely-spaced drill holes.

17.1.4 Resource Estimation Results under the JORC Code

The skarn-type mineral resources, inclusive of ore reserves, as of June 30, 2010 under the JORC Code estimated by BDASIA for the Jiama Project are summarized in Table 17.8. The cutoff grade used for the skarn-type resource summary is 0.3% copper, or 0.03% molybdenum, or 1% lead, or 1% zinc. The measured and indicated skarn-type resources in the deposit are also summarized by 50-m vertical intervals in Table 17.9.

JORC Skarn-Type Resource Estimates for the Jiama Project as of June 30, 2010 (Cutoff grade for the resource estimate is 0.3% Cu, or 0.03% Mo, or 1% Pb, or 1% Zn.)

			Gr	ade					Me	tals		
Kt	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %	Cu kt	Mo kt	Au t	Ag t	Pb kt	Zn kt
					Measu	red Res	ource					
82,928	0.83	0.042	0.30	16.0	0.06	0.05	686.9	34.42	25.11	1,326	51.9	38.7
					Indicat	ed Reso	ource					
102,187	0.68	0.041	0.22	13.7	0.10	0.05	691.6	42.07	22.33	1,396	100.6	55.4
				Meas	sured + 1	ndicate	d Resour	ce				
185,116	0.74	0.041	0.26	14.7	0.08	0.05	1,378.5	76.49	47.44	2,722	152.5	94.1
					Inferr	ed Reso	urce					
165,763	0.64	0.053	0.21	13.1	0.14	0.06	1,068.0	88.57	35.42	2,179	239.0	106.9

Table 17.8

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Table 17.9

Measured and Indicated Skarn-Type Resource Estimates for the Jiama Project by Level

(Cutoff grade for the resource estimate is 0.3% Cu, or 0.03% Mo, or 1% Pb, or 1% Zn.)

		Grade					Metals						
Level	kt	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %	Cu kt	Mo kt	Au t	Ag t	Pb kt	Zn kt
5050-5100	94	0.72	0.016	0.10	12.2	0.33	0.44	0.7	0.01	0.01	1	0.3	0.4
5000-5050	397	0.59	0.012	0.24	20.6	0.50	0.78	2.4	0.05	0.09	8	2.0	3.1
4950-5000	641	0.71	0.016	0.26	22.2	0.52	0.58	4.5	0.10	0.17	14	3.3	3.7
4900-4950	351	0.83	0.016	0.19	18.8	1.55	0.59	2.9	0.05	0.07	7	5.4	2.1
4850-4900	383	0.97	0.007	0.29	17.1	0.98	0.44	3.7	0.03	0.11	7	3.8	1.7
4800-4850	615	0.56	0.017	0.15	15.8	0.60	0.30	3.5	0.10	0.09	10	3.7	1.8
4750-4800	1,272	0.38	0.023	0.09	15.7	0.75	0.34	4.8	0.29	0.11	20	9.6	4.3
4700-4750	2,821	0.52	0.021	0.14	22.3	0.80	0.19	14.6	0.60	0.38	63	22.7	5.3
4650-4700	4,005	0.54	0.025	0.14	13.9	0.40	0.11	21.7	1.00	0.56	56	16.1	4.5
4600-4650	5,090	0.61	0.028	0.18	11.5	0.20	0.07	31.1	1.40	0.90	59	9.9	3.3
4550-4600	10,875	0.68	0.042	0.23	13.9	0.10	0.07	74.5	4.54	2.53	151	11.1	7.3
4500-4550	34,729	0.79	0.046	0.25	14.0	0.05	0.03	273.3	16.08	8.84	486	16.4	11.2
4450-4500	65,371	0.81	0.040	0.31	16.3	0.03	0.03	531.8	26.21	20.02	1,063	21.2	18.6
4400-4450	39,142	0.74	0.039	0.26	14.8	0.06	0.06	291.1	15.30	10.15	579	22.9	22.8
4350-4400	14,158	0.58	0.058	0.16	10.2	0.02	0.02	82.5	8.18	2.33	144	3.5	3.2
4300-4350	4,725	0.68	0.048	0.19	10.2	0.01	0.02	32.1	2.27	0.92	48	0.5	0.8
4250-4300	331	0.88	0.048	0.42	16.5	0.01	0.02	2.9	0.16	0.14	5	0.0	0.1
4200-4250	81	0.39	0.079	0.17	8.0	0.00	0.01	0.3	0.06	0.01	1	0.0	0.0
4150-4200	35	0.21	0.118	0.09	4.4	0.00	0.01	0.1	0.04	0.00	0	0.0	0.0
Total	185,116	0.74	0.041	0.26	14.7	0.08	0.05	1,378.5	76.49	47.44	2,722	152.5	94.1

The hornfels-type mineral resources, as of June 30, 2010 under the JORC Code as estimated by BDASIA for the Jiama Project are summarized in Table 17.10. The cutoff grade used for the hornfels-type resource summary is 0.3% copper, or 0.03% molybdenum, or 1% lead, or 1% zinc. Only inferred resources were estimated for the hornfels-type mineralization.

Table 17.10

Hornfels-Type Mineral Resource Estimates for the Jiama Project as of June 30, 2010 (Cutoff grade for the resource estimate is 0.3% Cu, or 0.03% Mo, or 1% Pb or 1% Zn.)

			Gr	ade					Contain	ed Metal		
Mt	Cu %	Mo %	Au g/t	Ag g/t	Pb %	Zn %	Cu kt	Mo kt	Au t	Ag t	Pb kt	Zn kt
					Inferr	ed Reso	urce					
655	0.23	0.045	0.02	1.17	0.00	0.01	1,500	290	13	770		—

BDASIA would note that mineral resources that are not mineral reserves do not have demonstrated economic viability. BDASIA would also note that the inferred resource estimates have a great amount of uncertainty as to their existence, and economic and legal feasibility. It cannot be assumed that all of an inferred mineral resource will be upgraded to a higher category. Under Canadian rules, estimates of inferred mineral resources may not form the basis of feasibility or pre-feasibility studies, or economic studies except for preliminary assessment or scoping study as defined under Canadian NI 43-101. Investors are cautioned not to assume that all of the inferred resources exists, or is economically or legally mineable.

17.2 Ore Reserve Estimates

Based on the December 2009 Changsha Institute feasibility study report, mining operations of the Jiama Project include both open-pit mining and underground mining. Two open pits, the smaller Tongqianshan pit located at the southwestern portion of the current Jiama Mining license, and the larger Niumatang pit located north of the Tongqianshan pit, have been designed for the project.

17.2.1 Economic Value Calculation of the Resource Model

The resource block model developed by BDASIA was used by the Changsha Institute in conducting mine planning and ore reserve estimation. An economic value was calculated for each model block based on the selected metal in concentrate prices and processing recoveries listed in Table 17.8 as well as mining dilution and mining recovery factors listed in Table 17.9.

Item	Metal	Parameter	Note
	Cu	RMB48,000/t (US\$7,080/t)	
	Mo	RMB300,000/t (US\$44,248/t)	These metal in concentrate prices
Malli Contra Di	Au	RMB200/g (US\$918/oz)	include a 17% VAT except for
Metal in Concentrate Price	Ag	RMB3,200/t (US\$14.68/oz)	gold, which is not subject to VAT
	Pb	RMB12,500/t (US\$1,844/t)	in China.
	Zn	RMB12,000/t (US\$1,770/t)	
			These processing recoveries were
	Cu	83%	based on the information available
	Mo	75%	at the time when the mine
Processing Recovery	Au	50%	planning was conducted, and are
6	Ag	80%	slightly different from the
	Pb	75%	processing recoveries used in
	Zn	75%	project financial analysis.

 Table 17.8

 Metal in Concentrate Prices and Processing Recoveries used for Mine Planning

Metal in concentrate prices for copper, molybdenum, lead, and zinc in Table 17.8 represent the actual average market metal prices for the last 3 to 5 years in China. Gold and silver prices are slightly higher than the past 3-year actual averages, but they represent the Changsha Institute's expectation for the long-term prices for these two metals. BDASIA notes that the gold and silver prices in Table 17.8 are metal prices instead of metal in concentrate prices. Compared to the metal in concentrate prices used in the base case financial analysis of the Jiama Project (Table 21.6 of this ITR), the gold in concentrate price in Table 17.8 is 22.0% higher, and the silver in concentrate price is 20.3% higher.

Processing recoveries used for mine planning were based on the available data at the time when the mine planning was conducted and are not exactly the same as those for the base-case project economic analysis, except for gold. The copper recovery of 83% in Table 17.8 is lower than the 85% (when the average copper grade is not more than 0.8%) or 90% (when the copper grade is above 0.8%) copper processing recovery used for project financial analysis; the molybdenum recovery of 75% in Table 17.8 is higher than the 70% molybdenum processing recovery used in the project financial analysis; the lead recovery of 75% in Table 17.8 is less than the 80% lead recovery used in the project financial analysis; and the silver recovery of 80% in Table 17.8 is the same for most of the years in the mine life in the project financial analysis except for the initial 2 years of the mine life, when the silver recovery is 85%, as both the copper and lead concentrates will be produced for these 2 years. A zinc

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

value was calculated for the mine planning, but this metal is not recovered and payable in the project financial analysis; however, this should only produce a minimum impact on the mine plan, as the zinc grade is generally very low in the resource model.

As copper is the primary economic metal in the deposit and as the copper processing recovery used in the mine plan is 2% to 7% lower than the copper recovery in the project financial analysis, BDASIA considers that the net effect of the different metal in concentrate prices and processing recoveries used between the mine plan and the project economic analysis is that the mine plan is slightly more conservative and, therefore, is considered acceptable by BDASIA for the Jiama Project.

The Jiama resource model was constructed using an ordinary kriging procedure, and a certain amount of mining dilution and mining losses have been built into the resource model because of the grade smoothing effect of the kriging grade estimation process. The Changsha Institute has applied additional mining dilution and mining recovery factors to the resource model as listed in Table 17.9. The Tongqianshan pit is mining the upper, steeply-dipping portion of the I-1 mineralized body, and the additional mining dilution factor applied is 5% and the mining recovery factor applied is 95%. The Niumatang pit is mining the lower, flatter portion of the I-1 mineralized body, and the additional dilution factor is 3% and the mining recovery factor is 97%. The underground reserve will be mostly mined by open stoping methods, and the additional mining dilution factor is 10% for the upper, steeply-dipping portion of the I-1 mineralized body (+4,600 m), and 8% for the lower, flatter, and thick portion of the mineralized body. The mining recovery factor applied is 85% for the upper, steeplydipping ore zone and 90% for the lower, flatter, and thick ore zone. BDASIA considers these mining dilution factors and mining recovery factors to be appropriate for the planning stage. However, BDASIA recommends that Huatailong closely monitor the actual mining dilution and mining recoveries in the actual mining operation and calculate the actual mining dilution factors and mining recovery factors based on the production reconciliation data.

Area	Factor	Chinese Parameter	Western Parameter
Tongqianshan Pit	Dilution Factor	5%	5.26%
	Mining Recovery Factor	95%	95%
Niumatang Pit	Dilution Factor	3%	3.09%
-	Mining Recovery Factor	97%	97%
Underground (+4,600 m)	Dilution Factor	10%	11.11%
Sublevel Stoping	Mining Recovery Factor	85%	85%
Underground (-4,600 m)	Dilution Factor	8%	8.70%
Panel Sublevel Stoping	Mining Recovery Factor	90%	90%

 Table 17.9

 Mining Dilution and Mining Recovery Factors for Reserve Estimation of the Jiama Project

It should be noted that the definition of the mining dilution factor in China is different from that in most Western countries. The mining dilution factor in China is defined as the ratio of the waste tonnage in the concentrator feed to the total concentrator feed tonnage, while the mining dilution factor in the West is defined as the ratio of the waste tonnage in the concentrator feed to the ore tonnage in the concentrator feed. Therefore, when using the same data for calculation, the Western mining dilution factor is always higher than the Chinese mining dilution factor, with the difference getting larger when the dilution factor is higher. For example, the Chinese mining dilution factor of 6.0% is

APPENDIX V-B INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

equivalent to a Western mining dilution factor of 6.4%, and the Chinese mining dilution factor of 9.0% is equivalent to a Western mining dilution factor of 9.9%. The mining dilution factors discussed in the text above all refer to the Chinese mining dilution factors; the corresponding Western mining dilution factors are listed in Table 17.9.

17.2.2 Mine Planning and Reserve Estimation for the Tongqianshan Pit

The Tongqianshan pit is a relatively small open pit located at the southern section of the I-1 mineralized body, where the ore zone is relatively steeply-dipping and exposed on the surface. The open-pit design was not based on an optimization analysis but was designed to meet the waste-to-ore strip ratio that ensured the pit's profitability and provided early ore production for the start up of the operation. In addition, the open pit met the project needs to provide sufficient waste rock to establish an operational work area above the base of the valley at the level of the planned entrance (around the MSL elevation of 4,600 m) to the underground mine.

The open-pit slope parameters for the design are 15-m benches with a 4-m-wide berm followed by a second bench with a 14-m-wide safety berm; the berm width alternates between 4 m and 14 m down the pit slope. The haul road width is designed at 12 m, although the majority of pit benches will not require a haul road within the bench due to the topography of the pit and only the last three benches being continuous, i.e., not daylighting. The bench face slope angle is 70° , giving an overall open-pit slope angle of 45° .

The pit is located within the valley between the Tongshan and the Qianshan mountains, with the main walls of the pit being on the east and west walls cut into the sides of the two mountains. The dimensions of the pit are approximately 640 m east-west and 580 m north-south. The highest pit wall is 270 m. The final pit is only 45 m below the floor of the valley, with all other benches daylighting. The defined final pit contains approximately 3.7 Mt of ore and 20.8 Mt of waste at a strip ratio of 5.6:1 (waste:ore) by weight.

Within the planned open pit, there has been some localized extraction of ore from previous underground workings, as mentioned previously in this ITR. The Changsha Institute has noted that these mining areas can create a risk to the open-pit mining operation and recommended that the Jiama Project take measures to protect the open-pit operation with procedures to identify these voids within the mining area as the open pit progresses.

17.2.3 Mine Planning and Reserve Estimation for the Niumatang Pit

The design of the Niumatang open pit, which contains the majority of the open-pit reserves, was based on optimization work undertaken by the Changsha Institute and reviewed by BDASIA. An optimization procedure, using the Lerchs Grossman algorithm in SURPAC, was used to create optimized pit shells from the resource block model.

The mining cost parameters used in the pit optimization analysis were based on the unit mining costs of RMB17.5/t (US\$2.58/t) for ore mining and RMB15.5/t (US\$2.29/t) for waste stripping. Other unit costs, including processing, G&A, sales, and financing, total RMB145.0/t (US\$21.39/t) of processed ore. These costs are generally higher than the unit costs used for the project financial analysis (unit ore mining cost RMB16.4/t (US\$2.42/t), unit waste stripping cost RMB13.2/t (US\$1.95/t), unit ore transportation, mining management, processing, G&A, sales, and financing costs RMB112.5/t (US\$16.59/t)).

The assumption for the pit slopes for all walls was 45°.

The analysis was based on a block economic value calculated from the block metal grades, processing recoveries, and metal in concentrate prices.

The selected shell for final pit design from the optimization analysis was chosen to maximize profitability and minimize the strip ratio. The open-pit design followed the selected optimization shell, with the designed final pit containing approximately 19.9 Mt of ore and 146.2 Mt of waste at a strip ratio of 7.4:1 (waste:ore) by weight. The dimensions of the pit are approximately 900 m east-west and 840 m north-south. The highest pit wall is 570 m. The final pit is only 80 m below the floor of the valley, with all other benches daylighting. The open-pit slope parameters for the design are similar to the Tongqianshan pit.

BDASIA notes that the optimization analysis did not consider the marginal cost of mining the ore zones within the open pit by underground mining. The overall unit open-pit unit mining costs for the Niumatang pit are higher than the unit underground mining costs. BDASIA recommends that further optimization of the mine plan be carried out to better define the boundary between the open-pit and underground mining method. Any adjustment in the boundary would need to be assessed with respect to the impact on the mine scheduling and timing of the capital cost of increasing the underground production capacity.

17.2.4 Underground Mine Planning and Reserve Estimation

In planning the extraction methods for the underground mine, the Changsha Institute divided the ore zone into the steeply-dipping (averaging approximately 60°) section above the 4,550-m level and the flatter (dipping approximately 10°) but relatively thick section below the 4,550-m level. The reserve split within the two ore zones is currently approximately 20% and 80%, respectively.

Access to underground is planned from the 4,600-m level in the Xiagongpu valley, north of the Tongqianshan pit, with two inclined shafts and a decline access for trackless equipment. The shafts will be inclined at 30°, with one shaft used for transportation of personnel and materials and the second shaft used for waste hoisting; the shafts will have an approximately 600-m final depth, with an initial 355 m developed in the first stage of underground production. Prior to the construction of the underground access, the valley is required to be filled to the 4,600-m level with waste rocks from the Tongqianshan pit. The waste rock will also create a platform for construction of mine offices and other surface infrastructure for the underground mine.

The mining method planned for both the steeply-dipping and flatter, thick zones is open stope mining, with variations to the access, stope dimensions, and sublevel intervals. Stopes within the flatter, thick section are planned to be backfilled with classified tailings, with and without cement. Stopes within the steeply-dipping zone will not be backfilled.

For the flatter, thick zone, it is planned to mine the zone in 50-m vertical height blocks, with the stopes approximately 45-m high, 50-m long, and 15-m wide, yielding approximately 100,000 t per stope. The sublevel interval planned is to be two at 15 m and one at 20 m, with a 5-m crown pillar above the stope. Primary stopes, i.e., where no stope extraction has occurred adjacent to the stope, will be cement filled to allow adjacent stopes to be extracted. For secondary stopes where no stopes are planned to be extracted beside the stope, no cement will be used in the fill, and a finer hydraulic fill is

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

planned; some secondary stopes may be cement filled where further mining of tertiary stopes is planned. Management of backfilling is one of the critical activities to ensuring long-term production schedules are met and stope sequencing is not compromised due to late filling of stopes. Cement fill stopes will require appropriate curing time before mining commences from adjacent stopes. While management of the blasting against fill will minimize fill failures, some fill will inevitably break into secondary and tertiary stopes.

In the steeper zones, the sublevels are planned at the same sublevel interval of 15-m and 20-m. Stope length is 20-m and stope width is set by the ore zone, which will be 20-m or greater, yielding approximately 50,000 t per stope.

The two mining methods described above account for around 90% of the ore reserves. For zones where open stoping mining methods are not appropriate due to ore dimensions, room-and-pillar or shrinkage stoping mining methods are planned, depending on the thickness of the ore zone and the dip.

A unit economic value was calculated for each stope based on the resource model metal grades, metal in concentrate prices, and metallurgical recoveries to determine if the stope is profitable and should be considered as a reserve.

17.2.5 JORC Ore Reserve Statement for the Jiama Project

Ore reserves under the JORC Code were summarized based on the block/stope unit economic values calculated for the resource blocks within the final Tongqianshan pit and Niumatang pit designs and for stopes within the planned underground mining areas. The cutoff unit economic values used to separate ore and waste by the Changsha Institute are listed in Table 17.10.

Table 17.10 Cutoff Unit Economic Value for Reserve Estimation of the Jiama Project

Area	Cutoff Unit Economic Value	Total Unit Ore Operating Cost In Project Financial analysis
Tongqianshan Pit	RMB276.5/t (US\$40.78/t)	RMB133.2/t (US\$19.65/t)
Niumatang Pit	RMB249.0/t (US\$36.73/t)	RMB128.9/t (US\$19.01/t)
Underground (+4,600 m)		
Sublevel Stoping	RMB276.5/t (US\$40.78/t)	RMB201.0/t (US\$29.65/t)
Underground (-4,600 m)		
Panel Sublevel Stoping	RMB249.0/t (US\$36.73/t)	RMB201.0/t (US\$29.65/t)

For comparison purposes, total unit ore operating costs (including ore mining, transportation, processing, G&A, sales, and financing costs) used for the project financial analysis for each mining area of the Jiama Project are also listed in Table 17.10. It can be seen that the cutoff unit economic values are considerably higher than the total unit ore operating costs used in the project financial analysis, especially for the two open pits. This means that the marginally profitable resource blocks or stopes are not included in the ore reserve estimate by the Changsha Institute.

Only the measured and indicated resource block/stopes were used for reserve estimation. The economic measured resource was converted to a proved reserve and the economic indicated resource was converted to a probable reserve. Appropriate mining dilution factors and mining recovery factors have been incorporated into the reserve estimates.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

BDASIA considers that the Changsha Institute's reserve estimates are relatively conservative and meet the JORC reserve definition. As the ore reserves for the Jiama Project are sufficient for the planned production rate for approximately 30 years, eliminating some of the low-profit-margin ore blocks from production will actually help the project economics. Therefore, the Changsha Institute's reserve estimates are adopted by BDASIA in this ITR. Table 17.11 summarizes the JORC reserve estimates for the Jiama Project as of June 30, 2010. The waste tonnage and strip ratio for the two open pits have also been summarized in the table. These reserve estimates are also compliant with the CIM Standards as the JORC and CIM reserve classifications are exactly the same.

				Gra	ıde			Metals						
Туре	kt	Cu %	Мо %	Au g/t	Ag g/t	Pb %	Zn %	Cu kt	Mo kt	Au t	Ag t	Pb kt	Zn kt	
Tongqianshan Pit														
Proved	1,208	0.64	0.015	0.20	10.0	0.21	0.05	7.7	0.18	0.24	12	2.5	0.6	
Probable	2,524	0.77	0.012	0.24	13.4	0.51	0.09	19.4	0.29	0.60	34	13.0	2.3	
Subtotal	3,733	0.73	0.013	0.23	12.3	0.41	0.08	27.1	0.47	0.84	46	15.5	2.8	
Waste	20,826													
Strip ratio	5.58													
Niumatang Pit														
Proved	14,473	1.04	0.039	0.45	21.6	0.03	0.03	150.9	5.66	6.56	313	4.2	3.9	
Probable	5,423	1.06	0.035	0.49	21.7	0.03	0.03	57.7	1.89	2.63	118	1.8	1.7	
Subtotal	19,897	1.05	0.038	0.46	21.6	0.03	0.03	208.6	7.55	9.19	430	6.0	5.6	
Waste	146,224													
Strip ratio	7.35													
Total Open Pits														
Proved	15,682	1.01	0.037	0.43	20.7	0.04	0.03	158.6	5.83	6.80	325	6.7	4.5	
Probable	7,948	0.97	0.027	0.41	19.1	0.19	0.05	77.2	2.18	3.23	151	14.8	4.0	
Subtotal	23,630	1.00	0.034	0.42	20.1	0.09	0.04	235.8	8.02	10.03	476	21.5	8.5	
Waste	167,050													
Strip ratio	7.07													
Underground Reserve														
Proved	37,860	0.75	0.038	0.27	14.5	0.06	0.04	284.2	14.48	10.3	550	22.9	16.9	
Probable	44,410	0.82	0.042	0.27	16.0	0.09	0.05	365.6	18.77	12.0	712	40.6	23.2	
Subtotal	82,269	0.79	0.040	0.27	15.3	0.08	0.05	649.8	33.25	22.3	1262	63.5	40.1	
Total Reserves														
Proved	53,541	0.83	0.038	0.32	16.3	0.06	0.04	442.8	20.31	17.1	874	29.6	21.3	
Probable	52,358	0.85	0.040	0.29	16.5	0.11	0.05	442.8	20.96	15.2	864	55.4	27.2	
Total	105,899	0.84	0.039	0.31	16.4	0.08	0.05	885.6	41.27	32.3	1738	85.0	48.6	
	-													

Table 17.11 JORC Ore Reserve Estimates for the Jiama Project as of June 30, 2010

17.3 Additional Exploration Potential

Copper-polymetallic mineralization at Jiama lies within a large mineralized system. Over 97% of the currently defined mineral resources are contained within the primary I-1 mineralized body controlled by the interlayer structure zone between the footwall Upper-Jurassic Duodigou Formation marbles and the hanging wall Lower-Cretaceous Linbuzong Formation hornfels. A total of 185 Mt of measured and indicated resources have been defined by current drilling, and there is an additional 166 Mt of inferred mineral resource for the Jiama Project. With additional drilling and sampling, BDASIA believes that a significant portion of the inferred resource can be upgraded to the measured and indicated resource categories, which in turn, can be used for additional ore reserve estimation. In

addition, the I-1 mineralized body is generally open in the down-dip direction to the northeast, representing significant additional exploration potential in that area.

Furthermore, as Jiama is within a large mineralized system and as Huatailong's mining and exploration licenses cover an area of 145.5 km², it is possible to find other mineralized bodies similar to the I-1 mineralized body and other types of mineralization, such as porphyry-type copper or copper-polymetallic mineralization, within the mining/exploration license area.

17.4 Mine Life Analysis

Based on the December 2009 Changsha Institute feasibility study report, the current proved and probable ore reserves for the skarn-type mineralization of the Jiama Project are 105.9 Mt. At the planned long-term production rate of 3.6 Mtpa, the current reserve mine life for the Jiama Project is approximately 29.4 years. This reserve mine life may change significantly in the future due to the following reasons:

- In addition to the proved and probable reserve estimates, an additional 165 Mt of inferred mineral resources are estimated to exist for the skarn-type mineralization at the Jiama Project. BDASIA believes that additional drilling and sampling can upgrade a significant portion of this inferred resource into the measured and indicated resource categories, which in turn can be used to estimate additional skarn-type ore reserves for the Jiama Project. The additional ore reserves defined by upgrading the inferred resource estimate could increase the reserve mine life of the Jiama Project significantly;
- The mineralization is generally open in the down-dip direction, and additional exploration may increase the mineral resources significantly. Depending on economic conditions, some of the increased mineral resources could be converted into ore reserves, increasing the mine life; and
- Changes in the production rate would also change the mine life. The mine life would be shortened if the production rate is increased to a level higher than the anticipated long-term production level.

17.5 Resource/Reserve Reconciliation under the CIM Standards

The CIM Standards are a resource/reserve classification system very similar to the Australasian JORC Code. There is no material difference between the two classification systems. Resource/reserve estimates under the JORC Code can be easily converted to resource/reserve estimates under the CIM Standards. It should be noted, however, that under the JORC Code, inferred resource can be added to measured and indicated resources in reporting, while such an addition is not allowed under the CIM Standards in resource statements. In this ITR, the inferred resource is not added to the measured and indicated resources, as this ITR follows the NI 43-101 report disclosure guidelines.

Mineral resources, inclusive of mineral reserves, and mineral reserves under the CIM Standards for the Jiama Project as of June 30, 2010 are exactly the same as the mineral resources and ore reserves under the JORC Code and are summarized in Table 17.6 and Table 17.11, respectively.

18.0 INTERPRETATION AND CONCLUSIONS

The Jiama deposit is a large copper-polymetallic deposit with well-defined mineral resources and ore reserves. The currently defined ore reserve for the deposit is sufficient to support a production rate of 12,000 tpd or 3.6 Mtpa for approximately 30 years. In addition, there is a large, defined,

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

inferred resource, and the additional exploration potential is very good. The currently defined mineral resources and ore reserves will very likely be increased in the future with additional exploration work. The Tibet government is supportive of the development of the Jiama Project, and the pending mining license issue is unlikely to affect the defined reserves of the project.

The extraction of the I-1 mineralized body, the primary mineralized body in the Jiama deposit, requires the use of both open-pit and underground mining methods. BDASIA considers the mine design generally appropriate. However, there is a degree of uncertainty with the production targets during the ramp-up period; and, further detailed planning, optimization, and detailed geotechnical assessment would also assist in reducing the overall risk of the mine plan. The schedule is susceptible to interruptions from the supply of power. The economics of the two open pits are not optimum, but project goals such as early production and the need for waste as a platform for the underground mine access development justify the selection of the pit size, particularly the Tongqianshan pit.

Both the copper-lead ore and copper-molybdenum ore appear to be fairly typical and relatively simple to treat. It is expected that the concentrates of copper, lead, and molybdenum could be produced as indicated by the testwork and outlined in the life-of-mine production forecast (Table 21.2).

To ensure uninterrupted production, two aspects specific to this operation should be given a high degree of attention. They involve process water and movement of the tails from the plant to the final tailings disposal site.

Fresh water is scarce in the area, and the process water will have to be recovered, treated, and recycled.

The thickened tails will have to be pumped from the thickeners at a MSL elevation of around 3,980 m to a filtering facility at a 4,380-m MSL elevation, the water returned to process, and the filtered cake (tailings) transported by a conveyor belt and deposited in the final tailings disposal site. Any malfunction of this system will cause the shutdown of the plant and loss of production.

19.0 RECOMMENDATIONS

19.1 Exploration

Further in-fill drilling and step-out drilling are likely to significantly increase the currently defined mineral resources and ore reserves for the Jiama Project. BDASIA, however, does not consider additional drilling a high priority task at the current stage of project development as the defined ore reserves are sufficient to support the mining operation for approximately 30 years at the planned production rate of 12,000 tpd or 3.6 Mtpa. If mining operations over the next several years prove to be successful, Huatailong should consider increasing the currently planned production capacity of the project, and additional drilling to increase the mineral resources and ore reserves of the project may become necessary. Cost for the additional drilling could range from less than RMB5 M (US\$0.74 M) to more than RMB20 M (US\$2.9 M).

19.2 Open-pit Mining

A preliminary assessment of slope stability has been carried out on both the Tongqianshan and Niumatang pits, and it is recommended that a more detailed geotechnical assessment be carried out on the pit walls, particularly for the larger Niumatang open pit to better define the appropriate slope angle for the various walls of the pit.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Within the planned Tongqianshan open pit, there has been some localized extraction of ore by previous underground mining. The Changsha Institute has noted that these mining areas can create a risk to the open-pit mining operation and recommended that the Jiama Project take measures to protect the open-pit operation with procedures to identify these voids within the mining area as the open-pit progresses.

The optimization analysis for the Niumatang pit did not consider the marginal cost of mining the ore zones within the open pit by underground mining. The overall open-pit unit mining costs for the Niumatang pit are higher than those for the underground mine. BDASIA recommends that further optimization of the mine plan be carried out to maximize the profitability of ore extraction by better defining the boundary between the open-pit and underground mining methods.

19.3 Underground Mining

Given the quality of the orebody and adjacent rocks, BDASIA recommends that the stope dimensions within the zone below the 4,550-m level be geotechnically reviewed to determine if stope sizes can be increased without significantly affecting the production risk. Overall, BDASIA considers that further optimization of the mine design is warranted and has the potential to improve the profitability of the underground mine.

The recommendations made for both the open-pit mining and underground mining should generally be considered as part of routine technical work for the mining operation, and should not cost the project significantly more money. The optimizations discussed are very likely to result in some cost savings for the project.

19.4 Processing

Additional testwork aimed to design and confirm the process water treatment — its recycling and effect on concentrate grades and recoveries — is strongly recommended. The tests should be conducted on samples representing the mill feed for years 1, 2, 3, and 4, if at all possible. The final, locked-cycle tests should be carried out in duplicate. The cost for the additional test work can be ranged from RMB0.4 M (US\$0.059 M) to RMB1.5 M (US\$0.22 M).

20.0 REFERENCES

Mineral Resource Research Institute of Chinese Academy of Geological Sciences, 2009: Mineral Resource and Reserve Evaluation Report for the Jiama Polymetallic Deposit in Metrorkongka County, Tibet Autonomous Region (An unpublished internal company report). 141p. November 2009.

Changsha Engineering and Research Institute of Non-ferrous Metals Metallurgy, 2009: Feasibility Study Report for the 12,000 tpd Mining/Processing Operation for the Jiama Copper-Polymetallic Project of Tibet Huatailong Mining Development Company Limited (An unpublished internal company report). 331p. December 2009.

Changsha Engineering and Research Institute of Non-ferrous Metals Metallurgy, 2010: Preliminary Economic Assessment of the 50 ktpd of Mining/Processing Operation for Copper-Polymetallic Resources at Jiama for Tibet Huatailong Mining Development Company Limited (An unpublished internal company report). 167p. July 2010.

								011			
		te of ation urt in ng is ound ction tpd.		2025					3,600	3,600	
DUCT		ion rai g opera vill sta ndergro produc 2,000		2024					1,600	3,600	
PROI		roduct mining g pit v ground pa. Ur t total a or 1		2023					3,600	3,600	
AND		at a pi en-pit i matan underg S.6 Mtp ntain a ntain a		2022					3 600	3,600	
		tions). Ope ne Niu Atpa; pd or 3 pd or 3 to 4 to 3		2021		1,278 1.700		1,278	1,700	3,600	
		opera le 21.1 lg at the r 2.7 N ,000 the ine wi ine wi		2020		1,620 1.800		1,620	1,800	3,600	
		nining (Tabl ninir tpd oi to 12 the m the m		2019		2,700 1.800		2,700	1,800 1 800	3,600	
		nund r verser-pit ver-pit ver-pit verver verver, verver, verver, ververver, verververververververververververververv	roject	2018		7,920 1.800		7,920	1,800	3,600	
		ndergr ttely 3. tpa; op ion to ne proc d. The r capac	iama P	2017		12,060 1.800		12,060	1,800	3,600	
4 1 1		and u proxima 00,000 product otal min deplete ductior	r the Ji	2016		12,060 1.800		12,060	1,800	3,600	
pen-pit	pen-pit	of app od or 9 uining 1 g the to vill be ind pro	tion fo	2015		2,060 1 1.800		2,060 1	1,800	3,600	
e by o ine life	e by o ine life	3,000 t _j n-pit n creasin an pit v dergrou	le 21.1 ^r oduci	2014	23 109	5,300 1 1.800		5,323 1	1,909	3,600	
t of or /er a m ate of 3	t of or /er a m ate of 3	tal ope tpa, in gqiansh pit, un	Tab Mine P	2013	675 900	5,300 1 1.800		5,975 1	2,700 900	3,600	
05.9 M num ov it at a r	05.9 M num ov it at a r	the to 00,000 (e Tong natang	recast]	012	900 900	5,300 1: .800		;1 006;	,700 900	° 009,	
tely 10 per an	tely 10 per an	ihan pi easing d or 9 dhen th e Niur	ne Foi	11 2	850 <u>3</u> 900	300 15 800 1		150 18	700 2	700 3	
oxima	oxima	days gqians 1, incr 000 tp 014 w 1 of th	of-Mi	0 20	75 5, 50	37 97 15,	37	97 75 21,	50 2,	47 2,	
appr	appr	rking r Tony Mtpa of 3, d in 2	Life-	201	4,8,	22,55	22,55	4,8,	Ë.	6	
		mune 00 wo or 1.8 a rate 000 tpo he dep		2009	5,803 174	12,790 0	18,593	174		174	
11 1 Mining Onouotions	21.1 MILLING ODEFAUOUS	The Jiama Project plans to 3.6 Mtpa or 12,000 tpd based on 3(started in late July 2010 from the si April 2011 at a rate of 6,000 tpd c planned to start in January 2012 at mining is planned to ramp up to 6,0 rate of 12,000 tpd or 3.6 Mtpa. At th		Item	development vaste striping (kt) development waste striping (kt)	development waste striping (kt) development ore mining (kt) production waste striping (kt)	Total Open-pit Production development waste striping (kt)	development ore mining (kt) production waste striping (kt)	production ore mining (kt) Underground Ore Mining (kt)	Total Ore Production (kt)	
				V-	B-97						

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

	APPENDIX V-B		INDI	EPENDENI	TECH	NICAL REPO	ORT FOR T JIAMA MI	HE NE
Total	5,803 174 15,023 3,559	35,326 197 133,200 19,700	41,129 371	148,223 23,259 82,270 105,900		e rocks es) and ne, and ult zone	ssment latively	t pit be letailed
2040				1,500 1,500		ed. Th nd slat imestor ent fau	al asse at a rel	g open with c
2039				2,700 2,700		etermin mfels a arble, 1 etachm	technic een set	umatan defined
2038				3,600 3,600		eters d eks (hor arn, ma hrust-d	led geo have b	the Ni better
2037				3,600 3,600		t param nard roo the sk luctile t	lo detai slopes	lary of can be
2036				3,600 3,600		us rock els) to l vithin brittle-d	l 45°. N esigned	l bound pen pit,
2035				3,600 3,600		id varic d hornf alls are a large	30° and it the d	he fina atang o _l
2034				3,600 3,600		l out ar silicifie e pit w one is a	mately opes, bu	sis of t r Niumá
2033				3,600 3,600		n carried mostly a ty of th acture z	approxi g pit slo rea.	r analy e largei
2032				3,600 3,600		as beer rocks (1 majorii iapu fra	tween a umatan ining a	t furthe y for th
2031				3,600 3,600		g area h ry hard s). The a; the X	ange be r the Ni n the m	ject tha ticularl
2030				3,600 3,600		e mining rom ver d skarn ing are	of the r nshan o es withi	ma Pro gles, pai
2029				3,600 3,600		thin the range f me, an the min	hy are ongqiar al slope	the Jian ope ang
2028				3,600 3,600		ocks wi ng pits limesto within 1	pograp ar the T ne natur	ded to le pit sl
2027				3,600 3,600		of the re liumata narble, ntified	nding to or eithe my of th	ommen ope. Th
2026				3,600 3,600		sment c n and N hales, 1 een ide	surrou esigns f ar to ma	has reconciliated has been also been a
Item	Tongqianshan Pitdevelopment waste striping(kt)(kt)development ore mining (kt)production waste striping (kt)production ore mining (kt)Niumatang Mount Pit	development waste striping(kt)(kt)development ore mining (kt)production waste striping (kt)production ore mining (kt)Total Open-pit Production	development waste striping (kt) development ore mining (kt)	production waste striping (kt) production ore mining (kt) Underground Ore Mining (kt) Total Ore Production (kt)	21.1.1 Open-pit Mining Geotechnical Parameters	Some geotechnical asses within the planned Tongqiansha less hard rocks (carbonaceous s homfels. No major faults have b located south of the mining area.	The natural slopes of the has been completed for the pit d conservative 45°, which is simil	The Changsha Institute carried out to further optimize th

geotechnical assessment. There is some potential to reduce operating costs for the open pit if the pit slopes can be steepened without increasing the risk of wall failure above acceptable limits.

As part of the pit wall management program, the Jiama Project has commenced pit slope monitoring of both open pits and will continue this program as mining progresses.

Open-pit Mining Operation

The smaller Tongqianshan pit and the larger Niumatang pit designed by the Changsha Institute in its December 2009 feasibility study for the Jiama Project are summarized in section 17.2 of this ITR.

The feasibility study assumed production drilling and blasting of 15-m benches, with a drill hole diameter of 165 mm. The study assumed a mining fleet of 8-m³ CED1850-7 hydraulic excavators for waste stripping and 4-m³ CED650-6 hydraulic excavators for ore mining, with 45-t and 20-t trucks allocated to the respective excavators. The fleet sizes were calculated based on appropriate efficiencies, but no detailed haulage modeling was completed. Open-pit mining costs calculated from the fleet are within the range of costs from the open-pit contractor currently carrying out the pre-strip mining at both the Tongqianshan and Niumatang pits. The excavator size planned for mining ore from the 15-m blasted benches will require loading in sections or flitches (sub-benches) to ensure a safe work place and sufficient control of ore mining. The ore zone is relatively continuous, but BDASIA considers that Huatailong should consider reducing the height of the work bench to provide more control of ore mining, particularly in the early stage of the pit when grade control practices are being refined. Ancillary equipment, including bulldozers, water trucks, and front end loaders, is included within the mining fleet for the open pit.

21.1.2 Underground Mining

Underground mine planning for the Jiama Project has also been summarized in section 17.2 of this ITR.

It is planned to use drill jumbos for stope development and electric LHD units equipped with a 4-m³-capacity bucket for loading material to ore and waste passes. Ore passes will connect to interim haulage levels for each 50-m-thick block, where ore will be transported to a major ore pass to the main transportation system detailed in Section 21.1.3. Waste will be hauled up one of the inclined shafts and tipped initially within the Xiagongpu valley, with excess waste being taken to the open-pit waste dump. Waste rock may also be used as stope fill (negating the need to hoist the waste) where no cement is required. Drilling of production blast holes within the stopes is planned using Atlas Copco Simba 1254 units or similar equipment.

Ground conditions are anticipated to be good within the orebody, where the majority of underground development is planned in skarn that has been assessed as hard competent rock; other wall rocks are also expected to be competent. Given the quality of the orebody and adjacent rocks, BDASIA recommends that the stope dimensions within the zone below 4,550-m level be geotechnically reviewed to determine if stope sizes can be increased without significantly affecting the production risk. Overall, BDASIA considers that further optimization of the mine design is warranted and has the potential to improve the profitability of the underground mine. There is potential to extend the underground mine if the significant inferred resources can be better defined; any significant extension to the mine area would also justify a review of the mine plan.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

The ventilation plan for the mine is for fresh air to be drawn into the mine through the decline and the two inclined shafts. All return air will be exhausted initially through a return air system that will be mined to the north of the mine within the valley above where the Niumatang waste dump is planned. A second return air system will be developed for the mining of the ore zone above the 4,550-m level in the south of the mine area. Total design airflow through the mine is planned at about 190 m³ per second.

Drainage of water from the mine will be via the main transport haulage tunnel, which is located below the underground mine area. The haulage tunnel is being mined at a gradient of 0.3% from the surface adit, allowing free flow of all mine drainage water to the 4,261-m level adit northwest of the mine area. No significant water flows are anticipated from the country rock; any unforeseen water flows will have minimal impact on the operation given the general mine layout.

21.1.3 Ore Rail Transportation System

Ore from the Tongqianshan and Niumatang open pits is planned to be trucked to a crusher (crushing to minus 500 mm), where the crushed ore will discharge into an ore pass to feed an ore rail transport system. Ore from underground will be tipped into a separate pass to feed the same ore rail transport system.

The ore from both open pit and underground is planned to be tipped into ore passes that feed a rail system that transports the ore approximately 8.4 km to the ore bins above the main plant crushers. Due to the elevation difference between both the underground and open-pit operations and the plant, ore can be hauled with positive gradient fall between the levels below the mining operations and the level above the plant. The rail system consists of an initial section of 3.9 km on the 4,261-m level and progresses to the surface where the ore is transferred via an ore pass to the second underground rail section of 4.5-km on the 4,087-m level, exiting from underground at the adit above the plant crusher where a rail haulage car tipple is positioned above the ore bins. A duplicate tipple will be installed above the second plant. The rail haulage is planned to be a dual rail system, with 20-t electric locomotives pulling ten 20-m³ mine cars.

Other options were considered for transporting the ore to the processing plant, including truck haulage and aerial ropeway, but the proposed system provided reduced surface disturbance, low operating costs, and protection from the adverse weather conditions.

21.1.4 Life-of-Mine Forecast Mine Production Plan

The life-of-mine forecast mine production plan for the open pits and underground mine is detailed in Table 21.1.

Initial production of ore is from the Tongqianshan pit, with ore production targeted at 900,000 tpa or 3,000 tpd starting from late July 2010. Initial pre-production stripping is scheduled to be around 6.0 Mt of material, mostly waste, in 2009 and a similar material movement in 2010, with peak movement of material in 2011 of 6.8 Mt. Material movement will then reduce each year over the short life of the pit.

Pre-production stripping of waste in the Niumatang pit had commenced during BDASIA's site visit in December 2009 and is planned to take until the end of 2010; a total of 35.5 Mt of material is scheduled over the 2-year period. From 2011, ore production is targeted to achieve 1.8 Mtpa or

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

6,000 tpd over a mine life of approximately 11 years. Total material movement is scheduled at 17.1 Mtpa for the first 4 years, reducing to 13.9 Mtpa for the next 3 years before further reducing to below 9.7 Mtpa as the pit is mined out. With the flat-lying ore zone within the pit, the pit is planned to be mined in three stages as it advances back to the final pit wall. The stages allow the mining of waste rock to be scheduled at a relatively constant rate in exposing the ore.

Open-pit mining is conducted by contractors. Two mining contractors are used to mine the Tongqianshan pit and the Niumatang pit separately. The mining contractors are required to provide sufficient equipment to meet the life-of-mine schedule and mine the required ore and waste tonnages. At the time of BDASIA's site visit in December 2009, pre-production stripping of the two open pits was generally progressing as scheduled, and pre-production ore was hauled by truck to two small ore stockpiles (one for higher-grade ore and one for lower-grade ore) next to the primary crusher at the Phase I processing plant. No detailed pre-production waste stripping and ore production data, however, were available to BDASIA during the visit.

Initial underground mining is planned from the ore zone below the 4,550-m level and is scheduled at a rate of 1.8 Mtpa or 6,000 tpd after an initial ramp up in production of 50% in 2012 and 2013 and 94% in 2014 before full production in 2015. The underground mine will double in capacity in 2022 when the Niumatang open pit is mined out. A large capital program is planned during 2020 and 2021 to develop the new production areas, including above the 4,550-m level ore zone, and to purchase additional new and replacement mine equipment.

BDASIA would note that mine production is susceptible to any disruption in the power supply. BDASIA would also note that the production ramp-up process is dependent upon the capital expenditures incurred by mine/concentrator construction. Any delays in construction will cause a longer ramp-up period, increasing the operating costs of the initial years and the capital costs of the project.

21.2 Processing

Please refer to Section 16.0 for mineral processing and metallurgical recoveries of the Jiama ore.

21.3 Markets, Contracts, and Taxes

Copper, molybdenum, and lead concentrates produced from the Jiama Project will be sold to smelters located in various places in China. A preliminary sales contract was signed between Huatailong and a smelter customer in Gansu Province for the copper concentrate produced from the Jiama Project. The copper concentrate specifications include Cu grade ($\geq 18\%$), contents of Ni ($\leq 1.5\%$), As ($\leq 0.5\%$), Pb+Zn ($\leq 8.0\%$), Bi+Sb ($\leq 0.5\%$), MgO (4.0%), and moisture ($\leq 12\%$). All concentrates produced from the Jiama Project must be fully analyzed for all elements required by the eventual buyers. According to the preliminary contract, the sales price for copper in copper concentrate (Cu $\geq 18\%$ and $\leq 20\%$) will be based on the monthly average copper price on the Shanghai Metal Exchange less treatment charges ranging from 9.5% to 18% based on the copper price range. When the copper concentrate grade is more than 20%, there is a bonus of RMB1.0/t (US\$0.15/t) for each 0.01% incremental increase in copper grade until the copper concentrate grade reaches 30%, where no additional grade bonus will be applied. Gold and silver in the copper concentrate will be payable when the minimum grade of 1 g/t for gold and 20 g/t for silver is reached based on the monthly average gold

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

and silver prices on the Shanghai Metal Exchange adjusted by a price coefficient. The price coefficient for gold ranges from 80% when the gold grade equals or is more than 1 g/t and is less than 2 g/t to 87% when the gold grade equals or more is than 20.0 g/t. The price coefficient for silver ranges from 72% when the silver grade equals or is more than 20.0 g/t and is less than 50.0 g/t to 85% when the silver grade equals or is more than 20.0 g/t. Concentrate transportation will be paid by the seller, but the buyer will add a RMB200.0/t (US\$29.50/t) price for the copper metal contained in the copper concentrate for the concentrate sale. No molybdenum and lead concentrate sales contracts had been signed for the Jiama Project at the time of BDASIA's site visit in December 2009. The sales of these concentrates will be generally based on prevailing sale conditions in China.

The Jiama Project does not have any metal hedging contracts.

Open-pit mining operations are conducted by two mining contractors, one for the Tongqianshan pit and one for the Niumatang pit. The unit Niumatang contract mining price, including drilling and blasting, is RMB16.4/t (US\$2.42/t) for ore and RMB13.2/t (US\$1.95/t) for waste; the unit Tongqianshan contract mining price is higher, RMB20.7/t (US\$3.05/t) for ore and RMB17.5/t (US\$2.58/t) for waste.

Mining operations at the Jiama Project are subject to a resource tax of RMB15/t (US\$2.21/t) of processed ore and a resource compensation levy of 2% for the sales revenue generated from the operation. Copper, molybdenum, lead, zinc, and silver produced from the mine are subject to a VAT of 17%. Gold production is exempted from VAT in China. The Jiama Project is also subject to a city-maintenance-and-construction tax of 7% of the VAT and an education tax of 3% of the VAT. The corporate income tax rate for Huatailong is 15%.

The Jiama Project is required to post to an environmental reclamation bond of approximately RMB35 M (US\$5.2 M). A first payment of RMB1.5 M (US\$0.22 M) was made in 2009, and the remainder will be paid in 5 years following the commencement of Phase I production of the Jiama Project.

0n
ucti
rodi
Γ
4
21

Forecast life-of-mine annual processed ore, processing recoveries, and concentrate production from 2010 through the end of mine life for the Jiama Project are summarized in Table 21.2.

APPENDIX V-B

																											J	L			A [VI.	IN	E	4
	2025		3,600	3,600	0.83	0.033	0.36	17.7	0.18	70.0 70.00	1 21	1295	63.59	6.45	2.37	90.0	50.0	80.0	70.0				103,287	26.0	0.27	495	20,02 648	50.87	1,876	45.0	844				
	2024		3,600	3,600	0.81	0.047	0.31	19.0	0.23	0.03	1 60	1107	68.57	8.35	1.21	0.09	50.0	80.0	70.0				101,032	26.0	5.48	243	20,200 554	54.86	2,633	45.0	1,185				
	2023		3,600	3,600	0.85	0.046	0.33	17.0	0.11	10.02	10.0C	1174	61.35	3.96	2.47	0.06	50.0	80.0	70.0				106,154	26.0	5C.C	707 20	21,000	49.08	2,584	45.0	1,163				
	2022		3,600	3,600	0.91	0.023	0.30	16.5	0.25	0.12	01.20	1076	59.36	8.83	4.42	0.09	50.0	80.0	70.0				113,469	26.0	4./4	419	200,62	47.49	1,301	45.0	586				
	2021	1,700	1,900	3,600	0.97	0.021	0.44	17.4	0.01	0.04 25.05	CU.CC 91 0	1577	62.55	0.48	1.27	0.09	50.0	80.0	70.0				121,335	26.0	00.0	412	7887	50.04	1,176	45.0	529				
	2020	1,800	1,800	3,600	0.76	0.052	0.30	14.3	0.01	0.02	40.12 1 88	1092	51.60	0.45	0.69	85.0	50.0	80.0	70.0				89,374	26.0	0.11	407	1 67,62	41.28	2,927	45.0	1,317				
roject	2019	1,800	1,800	3,600	1.03	0.044	0.44	21.7	0.04	0.03	10.70	1568	79.77	1.41	0.91	90.0	50.0	80.0	70.0				128,115	26.0	0.12	48/	784	62.38	2,477	45.0	1,115				
iama P	2018	1,800	1,800	3,600	0.99	0.031	0.41	19.4	0.02	0.02	21.00 01 1	1477	69.93	0.89	0.84	0.06	50.0	80.0	70.0				123,648	26.0	16.0	70 1	02,140 738	55.95	1,747	45.0	786				
r the Ji	2017	1,800	1,800	3,600	0.97	0.028	0.38	18.3	0.04	0.03	101 101	1368	65.73	1.32	1.02	0.06	50.0	80.0	70.0				120,878	26.0	00.0	0077 10 0077 10	01,420 684	52.58	1.571	45.0	707				
21.2 ction fo	2016	1,800	1,800	3,600	0.98	0.032	0.38	17.2	0.07	0.05	115	1381	62.07	2.54	1.68	0.09	50.0	80.0	70.0				122,198	26.0	C0.C	400	1///10	49.65	1,796	45.0	808				
I able A	2015	1,800	1,800	3,600	1.11	0.053	0.42	21.3 2.0-	0.07	0.06	26.60 1 00	1501	76.79	2.34	2.25	0.0	50.0	80.0	70.0				138,189	26.0	5.43	0000 20	676,00 150	61.43	2.955	45.0	1,330				
recast	2014	1,909	1,691	3,600	0.85	0.048	0.28	16.1	0.01	0.02	40.00 174	1009	58.11	0.49	0.56	0.06	50.0	80.0	70.0				105,711	26.0	4.//	440	204,12 505	46.49	2,711	45.0	1,220				
Aine Fo	2013	2,700	900	3,600	0.95	0.043	0.35	17.5	0.03	0.02	10.40	1251	62.90	1.05	0.80	0.06	50.0	80.0	70.0				117,931	26.0	05.5	42/	200,UC	50.32	2,436	45.0	1,096				
ife-of-N	2012	2,700	900	3,600	1.10	0.051	0.40	19.3	0.04	0.02	1 83 U	1452	69.37	1.46	0.88	0.06	50.0	80.0	70.0				136,917	26.0	05.5	405 202 2 C	060,00 776	55.49	2,846	45.0	1,281				
Γ	2011	2,700		2,700	0.96	0.040	0.39	19.1	0.20	0.02 20.02	1.08	1043	51.61	5.35	1.32	90.0	50.0	50.0	70.0	80.0	35.0		89,444	26.0	5.8.5	687 77 75 5	CC7,C7	25.81	1,684	45.0	758	7,130	60.0	2,534	4,278
	2010	1,121		1,121	0.83	0.015	0.26	17.3	0.92	0.16	0.16 016	292	19.34	10.30	1.78	0.06	50.0	50.0	70.0	80.0	35.0		32,311	26.0	4.52	667	0,401 146	9.67	256	45.0	115	13,735	60.0	493	8,241
		ed Ore Production from open pits (kt)	from underground (kt)	Total milled ore production (kt)	average Cu grade (%)	average Mo grade (%)	average Au grade (g/t)	average Ag grade (g/t)	average Pb grade (%)	average Zn grade (%)	contained Mo metal (ht)	contained Au metal (kg)	contained Ag metal (t)	contained Pb metal (kt)	contained Zn metal (kt)	ing Recovery (%) Cu to Cu concentrate	Au to Cu concentrate	Ag to Cu concentrate	Mo to Mo concentrate	Pb to Pb concentrate	Ag to Pb concentrate	centrate Production	Cu concentrate (t)	Cu grade (%)	Au grade (g/t)	Ag grade (g/t)	Contained Cu metal (U Contained Au metal (kg)	Contained Ag metal (t)	Mo concentrate (t)	Mo grade (%)	Contained Mo metal (t)	Pb concentrate (t)	Pb grade (%)	Ag grade (g/t)	Contained Pb metal (t)

INDEPENDENT TECHNICAL REPORT FOR THE

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Item	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	Total
Milled Ore Production from onen nits ([ct)																23.630
from underground (kt)	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	2,700	1,500	81,591
Total milled ore production (kt)	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	2,700	1,500	105,221
average Cu grade (%)	0.91	0.71	0.71	0.71	0.71	0.75	0.71	0.70	0.63	0.80	0.77	0.82	0.66	0.70	0.47	0.83
average Mo grade (%)	0.022	0.033	0.036	0.031	0.025	0.030	0.036	0.054	0.065	0.032	0.038	0.028	0.041	0.062	0.092	0.039
average Au grade (g/t)	0.38	0.24	0.24	0.25	0.25	0.25	0.23	0.25	0.22	0.28	0.27	0.26	0.17	0.16	0.20	0.31
average Ag grade (g/t)	19.5	14.6	15.7	15.5	17.4	18.9	14.1	14.4	12.5	17.0	14.9	15.1	8.8	8.3	9.6	16.5
average Pb grade (%)	0.10	0.06	0.03	0.05	0.04	0.10	0.06	0.04	0.06	0.16	0.02	0.07	0.02	0.02	0.01	0.08
average Zn grade (%)	0.03	0.03	0.02	0.03	0.05	0.09	0.06	0.03	0.06	0.12	0.03	0.07	0.02	0.02	0.01	0.05
contained Cu metal (kt)	32.64	25.44	25.62	25.54	25.51	26.94	25.47	25.29	22.58	28.72	27.64	29.60	23.58	18.78	7.09	877.52
contained Mo metal (kt)	0.78	1.17	1.30	1.11	0.89	1.08	1.29	1.95	2.35	1.14	1.36	1.01	1.47	1.67	1.38	41.17
contained Au metal (kg)	1,361	878	850	916	893	006	835	903	783	993	986	930	608	442	298	32,239
contained Ag metal (t)	70.26	52.63	56.57	55.83	62.51	68.19	50.61	51.87	45.00	61.12	53.62	54.34	31.64	22.46	14.33	1,731.84
contained Pb metal (kt)	3.49	2.18	1.15	1.77	1.59	3.61	2.06	1.29	2.05	5.90	0.87	2.38	0.80	0.44	0.08	85.32
contained Zn metal (kt)	0.96	1.17	0.76	1.06	1.81	3.13	2.22	0.99	2.23	4.25	1.03	2.37	0.68	0.43	0.16	47.73
Milling Recovery (%)																
Cu to Cu concentrate	90.06	85.0	85.0	85.0	85.0	85.0	85.0	85.0	85.0	85.0	85.0	90.06	85.0	85.0	85.0	
Au to Cu concentrate	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	
Ag to Cu concentrate	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	80.0	
Mo to Mo concentrate	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	70.0	
Pb to Pb concentrate																
Ag to Pb concentrate																
Concentrate Production																
Cu concentrate (t)	112,996	83,177	83,762	83,507	83,412	88,065	83,252	82,686	73,834	93,878	90,368	102,453	77,089	61,380	23,188	2,973,039
Cu grade (%)	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0
Au grade (g/t)	6.02	5.28	5.07	5.49	5.35	5.11	5.02	5.46	5.30	5.29	5.46	4.54	3.94	3.60	6.42	5.42
Ag grade (g/t)	497	506	540	535	600	619	486	502	488	521	475	424	328	293	494	459
Contained Cu metal (t)	29.379	21.626	21.778	21.712	21.687	22.897	21.646	21.498	19.197	24,408	23.496	26.638	20.043	15.959	6.029	772,990
Contained Au metal (kg)	681	439	425	458	446	450	418	452	391	496	493	465	304	221	149	16,120
Contained Ag metal (t)	56.21	42.11	45.26	44.66	50.01	54.55	40.49	41.49	36.00	48.90	42.90	43.47	25.32	17.97	11.46	1.364.19
Mo concentrate (t)	1,216	1,821	2,030	1,727	1,392	1,681	2,011	3,038	3,657	1,768	2,120	1,578	2,289	2,597	2,142	64,044
Mo grade (%)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
Contained Mo metal (t)	547	819	913	777	626	756	905	1,367	1,646	796	954	710	1,030	1,169	964	28,820
Pb concentrate (t)																20,864
Pb grade (%)																60.0
Ag grade (g/t)																1,190
Contained Pb metal (t)																12,519
Contained Ag metal (t)																24.84
Based on the production sch	nedule d	levelop	ed by t	he Dec	sember	2009 (Changs	ha Inst	citute f	easibili	ty stud	ly repoi	rt for tl	he Jian	na Proj	ect, the
Dhase I 6 000-tud mill is expected to	o ctart	nerati	on at th	ined e	nning o	f the c	puone	tetterio	. of 20	10 with	h 1 1 1	1 Mt o	fore n	2000000	d in th	at wear
	, o otart	oputati	UII at ti	10 UUGU	, Sumu			Anai ini	10 10	то, w н	, 1.14	, 1111 U				at y vat.
Actual trial production of the Phas	se I cor	ncentra	tor star	ted in	July 2(JIO, bi	ut adju	stment	s that	have to	o be n	nade to	the pl	ant ha	ve dela	iyed its
commissioning. BDASIA was inforr	med by	Huatai	long th	at com	mercial	produ	ction o	f the P	hase I	plant s	tarted j	n Septe	ember (2010 a.	nd actu	al 2010

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

ore production will be reduced by approximately 60% from the original production target for 2010 as presented in Table 21.2. Ore processed in the first year will consist of ore mined from the Tongqianshan pit, stockpiled ore from pre-production stripping of the Tongqianshan pit, and preproduction stripped ore from the Niumatang pit. The Phase II 6,000-tpd mill was originally planned to be constructed in 2010 and become operational in early 2011 with a total 2.7 Mt of ore processed by the two processing plants in 2011. BDASIA was informed by Huatailong that construction of the Phase II plant will not start until December 2010. If the construction commences on time in December 2010 as currently planned, it is likely that the originally planned production targets for 2011 will be reduced by at least 10% due to the delayed starting of the Phase II plant construction. The full production rate of 12,000 tpd or 3.6 Mtpa is expected to be reached at the end of 2011 and will continue to 2038; after that, the two processing plants will be operated at a reduced rate for the final 2 years of the mine life. The forecast ore grades are based on the detailed production scheduling from the economic measured and indicated mineral resources in the computer resource model developed by BDASIA. An attempt has been made to schedule the mining of the relatively higher-grade Niumatang open pit and the flatter, thick underground stopes below the 4,550-m level in the earlier years of the mine life, resulting in relatively higher ore grades in the first half of the mine life. Appropriate mining dilution and mining loss factors have been adopted in the production scheduling process.

During the first 2 years of operation, a mixture of the copper-lead ore and copper-molybdenum ore will be processed; copper, molybdenum, and lead concentrates will be produced. Subsequently, the copper-lead ore will be exhausted, only copper-molybdenum ore will be processed, and only copper and molybdenum concentrates will be produced. The annual tonnage of copper, molybdenum, and lead concentrate will vary with the types of ore processed and the metal grades in the plant feed. In addition to copper, the copper concentrate produced will also contain generally 4 to 6 g/t of gold and 300 to 500 g/t of silver. The lead concentrate will generally contain at least 500 g/t of silver. The types of concentrate produced and their annual production tonnages, metal grades, and metal contents are presented in detail in Table 21.2. The forecast processing recoveries for each type of concentrate are based on the metallurgical testwork.

BDASIA considers that there is a degree of uncertainty for forecast production targets for the first two to three years of the mine life as the full production of the Phase I plant and the construction of the Phase II plant have been delayed for a number of months. Shortages in electricity supply for mine and mill production during the winter dry season will also cause some problems in achieving the production targets. Once the production capacity ramps up to the full designed production capacity and electricity supply to project become sufficient, the long-term production targets are considered reasonable and achievable by BDASIA. Additional drilling for the Jiama deposit is very likely to convert a significant portion of the large inferred mineral resource to the measured and indicated categories, and the economic portion of the upgraded resource will become ore reserves, extending the mine life or justifying a higher production rate in the future.

21.5 **Operating Costs**

The life-of-mine forecast operating costs for the Jiama Project are set out in Table 21.3. The operating costs have been estimated by the Changsha Institute and were presented in its December 2009 feasibility study report for the Jiama Project. BDASIA has made an adjustment for contract mining costs for the Tongqianshan pit based on the current mining contract and for the underground mining cost.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Open-pit contract mining unit costs are forecast to be RMB16.4/t (US\$2.42/t) of ore and RMB13.2/t (US\$1.95/t) of waste for the Niumatang pit and RMB20.7/t (US\$3.05/t) for ore and RMB17.5/t (US\$2.58/t) for waste for the Tongqianshan pit. These contract mining costs are based on the current mining contracts that Huatailong has with the mining contractors. There is an additional open-pit management cost of RMB5.6/t (US\$0.83/t) in the period from 2011 to 2013 increasing up to RMB8.4/t (US\$1.24/t) at the completion of the Tongqianshan pit.

The underground mining unit cost is estimated to be RMB117.9/t (US\$17.39/t) for approximately the first 2.5 years of production as production capacity increases to the forecast rate of 1.8 Mtpa. Once this rate is achieved, the unit mining cost reduces to RMB98.2/t (US\$14.48/t) until production capacity increases from 1.8 Mtpa to 3.6 Mtpa, when mining unit cost further reduces to RMB92.1/t (US\$13.58/t). The life-of-mine average unit underground mining cost is RMB94.5/t (US\$13.94/t). BDASIA has made a 15% positive adjustment over the unit underground mining cost estimated by the Changsha Institute as BDASIA considers that the Changsha Institute's estimate is not well defined and considers it prudent to make the adjustment to unit costs. BDASIA notes that the mine plan can be modified to absorb the increased costs, for instance by increasing sublevel intervals within the stopes and thereby reducing development requirements.

								-													JIAMA MINE
ent, is 94.5/t ucted, iining		2025					92.1	5.1	97.2	60.6	39.2	196.9	29.04	36.6	233.5	34 44	37.304	19,003	2,803	22,535	3,324
nageme f RMB pe cond round n ries.		2024					92.1	5.1	97.2	60.6	39.3	197.0	29.06	C 7 E	2.16	34 55	38.634	18.361	2,708	21,830	3,220
ning ma cost o hould t underg catego		2023					92.1	5.1	97.2	60.6	40.1	197.9	29.19	27 J	235.1	34.68	39.645	17.969	2,650	21,350	3,149
nd mir mining s ining s ease of osts by		2022					92.1	5.1	97.2	60.6	40.4	198.2	29.23	27 J	235.4	34 72	37.769	18.888	2,786	22,436	3,309
ning, a round m ound m he incre rating c		2021	16.4	13.2	6.8 9	33.1	95.9	5.1	71.4	60.6	40.1	172.1	25.38	463	2.18.4	32.21	40.594	15.260	2,251	19,367	2,857
aste mi underg undergr ation; tl he open		2020	16.4	13.2	8.3	36.6	98.2	5.1	72.5	60.6	35.2	168.3	24.83	48-1	216.4	31.92	35.631	17.007	2,508	21,864	3,225
ning, w e unit g and u ng oper: larizes t	Project	2019	16.4	13.2	8.3	44.6	98.2	5.1	76.5	60.6	42.4	179.4	26.46	48.1	2.7.5	33.55	46.568	13.870	2,046	17,586	2,594
ore mir-of-min -of-min t minin it minin 4 summ	Jiama]	2018	16.4	13.2	- 60 - 8	83.0	98.2	5.1	95.7	60.6	40.9	197.1	29.07	48.1	2.45.2	36.16	42.881	16.549	2,441	20,585	3,036
luding the life. ppen-pi open-p ble 21.	or the .	2017	16.4	13.2		113.4	98.2	5.1	110.9	60.6	40.1	211.6	31.21	48 1	2.59.7	38 30	41.285	18.453	2,722	22,645	3,340
ost, inc than tio of o the , of the ject. Ta	L3 Costs f	2016	16.4	13.2	8.3	113.4	98.2	5.1	110.9	60.6	40.5	212.0	31.27	48.1	260.1	38 36	42.106	18,126	2,673	22,236	3,280
ining c i higher of the ra portion ma Pro	able 21 erating	2015	16.4	13.2		113.4	98.2	5.1	110.9	60.6	44.5	216.0	31.85	48.1	2.64.0	38 94	50.307	15.455	2,279	18,894	2,787
hich is zation c zh-cost the Jia	T ast Ope	2014	16.7	13.3	7.8	130.8	100.9	5.1	121.8	60.6	37.9	220.4	32.50	48.1	2.68.4	30.50	39.413	20.128	2,969	24,518	3,616
tal oper ore, w optimiz , i.e. hig cost for	Forec	2013	17.9	13.4	5.5	102.8	117.9	5.1	111.6	60.6	39.2	211.4	31.18	48 1	259.5	38.27	42.522	17.899	2,640	21,969	3,240
unit to ocessed es that ip ratio mining	f-Mine	2012	17.9	14.0 7.0	5.5	121.7	117.9	5.1	125.8	60.6	43.1	229.5	33.85	48 1	277.6	40.94	49.256	16.772	2,474	20,286	2,992
f-mine of pro believ nigh str it total	Life-0	2011	17.9	14.4 7 s	5.5	136.2		6.2	142.4	61.7	43.2	247.4	36.48	453	202.6	43.16	33.385	20,006	2,951	23,665	3,490
e life-o 14.42/t) DASIA of the l n of un		2010	20.7	17.5	13.3	110.0		10.3	120.3	75.8	63.0	259.1	38.21	80.7	339.3	50.05	12.656	22.948	3,385	30,055	4,433
Table 21.3 shows that the forecast to be RMB97.8/t (US\$ (US\$13.94/t) of processed ore. B which will result in the reduction operation; and an overall reduction		Item	Open-pit Contract Ore Mining (RMB/t of ore)	waste)	Open-pit Management (RMB/t of ore)	Total Open-pit Mining (RMB/t of ore)	Underground Mining (RMB/t of ore)	Ore Transportation (RMB/t of ore)	Total Mining Cost (RMB/t of ore)	Total Processing Cost (RMB/t of ore) Total G&A and Other Cost (RMB/t of	ore)	Total Operating Cost (RMB/t of ore)	Total Operating Cost (US\$/t of ore)	Deprectation and Amortization (RMB/t of	Total Production Cost (RMR/t of Ore)	Total Production Cost (IISS/t of Ore)	CuEa in Concentrate Production (t)	CuEq Operating Cost (RMB/t)	CuEq Operating Cost (US\$/t)	CuEq Total Production Cost (RMB/t)	CuEq Total Production Cost (US\$/t)

INDEPENDENT TECHNICAL REPORT FOR THE

APPENDIX V-B

AP	PENDIX V-B	INDEPEND	ENT T	ЕСН	INICAL REPORT FOR THE JIAMA MINE
Total 17.1	13.7 5.3 7.5 94.5 5.3 100.5 61.5	200.7 29.60 38.5 35.28 35.28 35.28 35.28 23,86 2,856 2,856 3,404		<u>2025</u>	92.1 26.7 18.6 9.9 12.5 16.8 16.8 29.04
40	9.9 9.8 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	4.4 1.7 1.7 1.7 0.0 0.0 1.2 387 1, 497 497		2024	92.1 26.7 18.6 9.9 9.9 9.9 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3
<u> </u>	ci ci 4: 8: - 11 11 12 1	33 23 34 34 37 34 38 13, (9) 30, (20) 36 30, (20) 30, (10) 30, (20) 30, (10) 31, (10)		2023	92.1 26.7 18.6 9.9 9.9 9.9 9.9 12.9 17.3 17.3 17.3 29.19
203	110 80	230 33.53 33.53 33.53 33.53 263 26,93 24,97 28,55 28,55		2022	92.1 26.7 18.6 9.9 9.9 9.9 9.9 13.6 16.9 16.9 1 16.9 2 9.23
2038	92.1 5.1 97.2	191.5 28.30 25.0 25.0 21.95 31.95 3,529 3,529 3,529 3,989 3,989		<u>2021</u>	66.3 26.7 18.6 20.4 9.9 9.9 9.9 14.6 15.6 15.6 172.1 25.38
2037	92.1 5.1 97.2 60.6	196.3 28.95 25.0 25.0 25.0 35.152 35.152 20,100 20,100 20,100 23,343 3,343	.	2020 67.4	67.4 26.7 18.6 9.9 9.9 9.9 9.9 11.0 11.0 11.0 11.0 24.83 24.83
2036	92.1 5.1 97.2 60.6	194.5 28.69 31.1 225.6 33.28 3,568 3,568 4,196 4,196	roject	2019	71.4 26.7 18.6 9.9 9.9 9.9 9.9 15.5 15.5 15.5 15.9 4 179.4 26.46
035	92.1 5.1 97.2 60.6	95.0 8.76 31.1 26.1 3.34 3.34 3.34 3.34 3.728 2,334 3,728 2,033 2,033 2,545	ıma P	2018	90.6 26.7 18.6 9.9 9.9 9.9 14.9 14.9 16.1 16.1 16.1 29.07
34 2	22.1 55.1 0.6	2.5.1 1.1.1 2.5.5 1 1.1.1 2.3.6 2.3.6.2 3.3.6 2.06 200 200 200 200 200 200 200 200 200 2	he Jiî	2017 105 8	105.8 26.7 18.6 9.9 9.9 9.9 9.9 14.6 15.7 15.7 15.7 31.21
3 20		33 32 33 33 33 33 34 14 21 22 23 32<	s for t	<u>2016</u>	105.8 26.7 18.6 9.9 9.9 9.9 9.9 14.7 14.7 15.9 15.9 212.0 31.27
203	3 6 7 2 3	1 193 28,93 31,93 33,33,82 33,38 20,66 33,98 30,65 23,98 30,65 23,98 1 3,55	gorie	2015 105 8	105.8 26.7 18.6 20.4 9.9 9.9 9.9 16.8 17.8 17.8 31.85 31.85
2032	92.1 5.1 97.2	28.48 28.48 31.3 224.4 33.10 33.0,992 22,426 25,426 3,348 3,348 3,844	4 Cate	2014	116.8 26.7 26.7 18.6 9.9 9.9 12.9 12.9 15.1 15.1 15.1 3 2.50
2031	92.1 5.1 97.2 60.6	193.9 28.60 31.3 31.3 31.3 32.25 33.22 33.22 21,650 3,193 3,193 3,709	ole 21. sts by	2013 106.5	106.5 26.7 26.7 18.6 9.9 9.9 9.9 14.3 14.3 15.0 15.0 15.0 211.4 31.18
2030	92.1 5.1 97.2 60.6	192.8 28.43 32.8 32.8 33.27 33.27 33.27 33.148 3,414 3,414 3,414 3,995	Tab ing Co	2012	26.7 26.7 18.6 9.9 9.9 9.9 16.6 16.6 229.5 33.85
2029	92.1 5.1 97.2 60.6	193.0 28.46 32.8 33.30 0,673 3,341 3,341 3,908	perati	2011 136.7	136.2 28.3 18.8 18.8 20.8 13.2 15.6 15.6 14.5 14.5 247.4 36.48
2028	92.1 5.1 60.6	193.2 28.50 32.8 32.8 33.34 1,467 3,33.4 2,108 2,108 2,108 2,108 2,108 2,108 3,814 3,814	cast O	2010	10.0. 10.0 17.2 17.2 17.7 17.7 17.7 13.5 259.1 38.21
2027	92.1 5.1 97.2 60.6	192.9 28.46 32.8 32.8 33.29 0,625 3,345 6,535 3,914 6,535 3,914	e Fore		
2026	92.1 5.1 60.6	198.3 29.24 32.8 32.8 34.08 8,450 8,450 8,450 2,738 2,738 1,633 2,738 3,191	of-Min		ore)
Item Open-pit Contract Ore Mining (RMB/t of ore)	Open-pit Contract waste Mining (KMIb/t of waste)	Total Operating Cost (RMB/t of ore) Total Operating Cost (USS/t of ore) Depreciation and Amortization (RMB/t of ore) Total Production Cost (USS/t of Ore) Total Production Cost (USS/t of Ore) CuEq in Concentrate Production (t) CuEq Operating Cost (USS/t)	Life-	Item Contract Mining (DMD & of cea)	Contract Mining (RMB/t of ore)
					JIAMA MINE
--	--	--	--	---	--
Total 95.3 95.3 95.3 27.3 18.9 27.3 18.9 20.6 10.4 10.4 12.4 12.4 12.4 12.4 200.7 200.7 200.7 200.7 200.7 200.6 10.4 10.4 15.9		r the from this ives,	ecast ating) urce year	from
2040 113.9 34.1 26.5 22.9 14.2 7.2 7.2 15.4 234.4 34.57		8/t) fo /alley during comot	is for e oper	ie resc e first	MB20 anges
2039 104.2 35.1 24.8 27.2 13.2 13.2 10.1 10.1 15.8 33.97 33.97		S\$0.78 a the v igher for lo	it cost will b	and th for th	e of R osts, ra
2038 92.1 26.7 18.6 9.9 9.9 9.4 9.4 14.8 114.8 121.9 28.30		3/t (U) l down t are h epairs	his un lants	oosts, ixcept	iveragi ion co 8/t).
2037 92.1 26.7 18.6 9.9 9.9 9.9 112.4 116.3 196.3		MB5.3 rucked t costs and r	l/t). T 1 the p	tion e l ore e	nine a ortizat \$\$35.2
2036 92.1 26.7 18.6 9.9 9.9 9.9 11.0 11.0 15.9 194.5 28.69		be R] ll be ti nsport shutes	S\$8.94 e wher	sports cessed	fe-of-r nd am .2 (US
2035 92.1 26.7 18.6 9.9 9.9 9.9 9.9 11.4 11.4 16.0 195.0		ast to bre wil nit tra pass c	5/t (US ne life	id trar of pro	th a lii iion at IB239
2034 92.1 26.7 18.6 9.9 9.9 9.2 9.2 15.7 192.5 28.40		forec; tem, c ers. U le ore	IB60.6 he mi	ale an 56/t) (7), wii preciat of RM
2033 92.1 26.7 18.6 9.9 9.9 9.9 10.2 115.9 115.9 113.8 28.58		nes is ail sys crush crush th	oe RM rs of 1	rate s US\$6.	\$34.5 nit dep erage
2032 92.1 26.7 18.6 9.9 9.9 9.9 10.1 10.1 15.3 15.3 193.1		id mir the ra plant operat	ed to l 2 yea	oncent 1.5/t (1 /t).	/t (US and ur ine av
2031 92.1 26.7 18.6 9.9 9.9 9.9 10.7 10.7 15.6 193.9 28.60	eport.	groun ing of sssing s and	stimat ne last	sts, cc MB44 \$\$5.71	234.4, cost a -of-mi
2030 92.1 26.7 18.6 9.9 9.9 9.9 10.1 10.1 15.0 192.8 28.43	report. ' study re	under ission proce train	n is es ring th nable.	ive co) to R 7/t (US	RMB rating a life
2029 92.1 26.7 18.6 9.9 9.9 9.9 10.1 10.1 15.2 193.0	ty study asibility	t and comm ve the ng the	eratio as du reaso	iistrati 5.03/t B38.7	2/t) to it ope), with
2028 92.1 26.7 18.6 9.9 9.9 9.9 10.2 15.4 15.4 193.2 28.50	feasibili in the fe report.	o the o d abov oweri	full op s well to be	admir (US\$ re RM	\$24.8% tal un 0.04/t)
2027 92.1 26.7 18.6 9.9 9.9 9.9 10.1 10.1 15.2 192.9 28.46	st in the st items ty study	the of Prior t ckpile for p	rre in f ears a: mates	le the 34.1/t osts a	/t (US s of to US\$5(
2026 92.1 26.7 18.6 9.9 9.9 9.9 13.6 13.6 17.0 17.0 198.3	ment cos other co feasibili	both 011. J ng stoc ttricity	lants a al 2 y st esti	includ RMB ther c	168.3, onsists 9.3/t (
Item Contract Mining (RMB/t of ore) Workforce Employment and Transport of Workforce ⁽¹⁾ (RMB/t of ore) Workforce Employment and Transport of Workforce ⁽¹⁾ (RMB/t of ore) 18.9Consumables (RMB/t of ore) B: 9Consumables (RMB/t of ore) Monthanger Fuel, Electricity and Water (RMB/t of ore) Monthanger Dn and Off-Site Management (RMB/t of ore) Monthon (RMB/t of ore) Product Marketing and Transport (RMB/t of ore) Monorhore) Non-Income Taxes, Royalties and Other Governmental Charges (RMB/t of ore) Contingency Allowances ⁽³⁾ (RMB/t of ore) Total Operating Cost (RMB/t of ore) Total Operating Cost (USS/t of ore)	 Notes: (1) Cost for transport of workforce was included in the workforce employ. (2) Environmental protection and monitoring cost was not separated from (3) Contingency allowance was not separated from other cost items in the 	An additional ore transportation unit cost for life-of-mine once the rail system is commissioned in 2 the mine to the processing plants and is currently beir short trucking phase. Transportation costs include elec rail, mine cars, and chutes.	The long-term processing unit cost when the pl to be slightly higher for the ramp up period in the initi at a reduced rate. BDASIA considers the processing co	The unit G&A and other costs in Table 21.3 compensation levy at 2% of the profit and range from of operation. The life-of-mine average unit G&A and o	The total unit operating cost ranges from RMB (US\$29.60/t). The total unit production cost, which co RMB216.9/t (US\$31.99/t) of processed ore to RMB33

V-B-109

INDEPENDENT TECHNICAL REPORT FOR THE

APPENDIX V-B

BDASIA has calculated a copper-equivalent ("CuEq") production in concentrate for the Jiama Project based on the metal in concentrate sale prices (without VAT) as listed in Table 21.7, using the following formula:

 $CuEq (t) = Cu (t) + Mo (t) \times 256,410.26/42,115.39 + Pb (t) \times 10,683.76/42,115.39$ $+ Au (g) \times 166/42,115.39 + Ag (kg) \times 2,318.38/42,115.39$

Unit CuEq operating cost and unit CuEq total production have also been calculated and presented in Table 21.2.

BDASIA would note that no inflation factor has been built into the operating cost estimates for the Jiama Project.

21.6 Capital Costs

Table 21.5 shows the Changsha Institute's initial capital investment estimates for the 12,000 tpd Jiama Project in its December 2009 feasibility study. The capital cost estimates cover the pre-production stripping for the two open-pit mining areas, underground development, and construction of the ore transportation system, as well as Phase I and Phase II processing plants with a production rate of 6,000 tpd each, infrastructure, administration and supporting facilities, land acquisition, and other capital expenditures, and a 10% contingency for all of the estimated capital expenditures.

Table 21.5
Initial Capital Cost Estimates for the 12,000 tpd Production Capacity of the Jiama Project

				Engineering &			
Item	Development	Construction	Equipment	Installation	Other	Total	Percentage
Geology and Construction							
Exploration (RMB×10 ³)		16,041	2,067			18,108	0.68%
Open-pit Pre-production							
stripping (RMB×10 ³)							
Tongqianshan Pit							
(RMB×10 ³)	89,111					89,111	
Niumatang Pit							
(RMB×10 ³)	502,770					502,770	
Subtotal (RMB×10 ³)	591,881					591,881	22.21%
Underground Development							
(RMB×10 ³)	205,505	6,156	180,797	22,822		415,280	15.58%
Ore Transportation System							
(RMB×10 ³)	99,316	20,778	35,181	27,242		182,517	6.85%
Concentrating Plant and TSF							
(RMB×10 ³)		249,042	297,522	48,524		595,088	22.33%
Infrastructures (RMB×10 ³)		163,563	72,925	63,170		299,658	11.24%
Administration and Supporting							
Facilities (RMB×10 ³)		19,472	4,077	1,600		25,149	0.94%
Land Acquisition and Other							
Costs (RMB×10 ³)					295,184	295,184	11.08%
Contingency (RMB×10 ³)					242,286	242,286	9.09%
Total (RMB×10³)	896,702	475,052	592,569	163,358	537,470	2,665,151	100.00%
Total (US\$×10 ³)	132,257	70,067	87,400	24,094	79,273	393,090	100.00%

Table 21.6 shows the life-of-mine forecast capital expenditures for the Jiama Project. Based on the project construction progress, the Changsha Institute estimated that the total expenditures in 2008 and 2009 were approximately RMB1,480 M (US\$218.3 M), which is quite close to the actual total

									J	IAM	IA MINE
epresent ug of the oital cost steeply- .0 M) in r several		e for the o stages		2024				Total	4,139,146	610,493	0 0
ditures r a strippir ional cap it of the (US\$54 (US\$54 ie.		t estimat uilt in tw		2023				2040	-107,500	-15,855	-59,394 -8,760
l expen- oduction nt. Addit elopmer 3366 M ty be spi reasonab		oital cos vill be b		2022				2039			-44,152 -6,512
9 capita le pre-pr sing plar ; the dev 22, RMJ 22, RMJ pital ma		total ca _j ıts that v		2021	561,087	82,756		2038			-25,974 -3,831
und 200 ly for th l process ncluding 1) in 20 ment ca BDASI		ole. The ated plar		2020	233,550	34,447		2037			
008 <i>a</i> most most as II as III	М).	nievał	ect	2019				2036			
he 20 ss are he Ph he Ph US\$4 this re sider	319.1	nd ach sally s	Proj	2018				2035			
ng. T diture diture n of t n of t ound ound o M (c ect. T is con	(US	ble at physic	liama	2017				2034			
atailo xpen ructio dergr (B27(flb27(r Proj ount	9.5 M	asona two p	the J	2016				2033			
n Hui pital e constr nd uno of RM Jiama al am	1B129	are re on of	ts for	2015				2032			
ole fron ning cal ne, and o expar litures o for the e gener	d at RN	Project a nstructi	ole 21.6 tal Cos	2014				2031	420,885	62,077	
vailat remain nd min used t xpend vated but th	imate	ama F the co	Tab Capi	2013				2030			
lation a s. The lergroun vill be apital e en estin recast,	was est	or the Ji due to 1	orecast	2012			21,536 3,176	2029			
inform estimate the und 2022 v ement c also bed nts as fc	Project	mates fo is high	Mine Fo	2011	557,151	82,176	55,347 8,163	2028			
ased on al cost e oping of 021 and Replace 12 have ct amou	e Jiama	cost estin 87.8 M) cility.	Life-of-]	2010	628,000	92,625	52,637 7,764	2027			
2009 bailer apiti and equipand	ed for th	capital c M (US\$8 arger fac	_	2009	823,000	121,386		2026			
08 and otal initi pment a JS\$76.5 4,550-r \$62.1 N \$62.1 N	ıl require	that the AB595 I of one l		2008	657,000	96,903		2025	365,973	53,978	
capital expenditures in 20 approximately 56% of the Niumatang open pit, develc estimates of RMB519 M (1 dipping ore zone above the 2026, and RMB421 M (US years of the operation rather	Total working capit	BDASIA considers two processing plants of R ¹ at the available site, instead		Item	Total Capital Expenditures (RMB×10 ³)	I otal Capital Expenditures (US\$×10 ³)	Working Capital (RMB×10 ³)	Item	Total Capital Expenditures (RMB×10 ³)	I otal Capital Expenditures (US\$×10 ³)	Working Capital (RMB×10 ³)

INDEPENDENT TECHNICAL REPORT FOR THE

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

21.7 Base Case Economic Analysis

Metal prices used for the base case economic analysis of the Jiama Project in the Changsha Institute's December 2009 feasibility study report are listed in Table 21.7. A VAT of 17% is applied to all metal sales except for gold in China. Commonly, a concentrate producer in China sells its concentrate production to the smelter customers. Sale prices for metals in concentrate are discounted by a certain percentage from the metal sale prices based on the smelter's concentrate treatment costs and the prevailing metal market prices in China. The discount factors (if applicable) taken by the Changsha Institute in Table 21.7 represent the conditions set out in the preliminary copper concentrate sales contract discussed in Section 21.3 or the current industry averages in China. The copper, molybdenum, and lead prices selected by the Changsha Institute represent the actual average metal market prices for the last 3 to 5 years in China. Gold and silver prices selected by the Changsha Institute are slightly higher than the past 3-year actual averages, but they represent the Changsha Institute's expectation for the long-term prices for these two metals. BDASIA accepts these metal price selections and has used the same metal prices in the base case economic analysis of the Jiama Project in this ITR. The prices for metals in concentrate without VAT are used in the following economic analysis. In addition to the metal prices in Table 21.7, a copper concentrate transportation credit of RMB200/t (US\$29.50/t) of copper metal contained in the copper concentrate will be applied based on the current preliminary sales contract with the copper concentrate buyer.

 Table 21.7

 Metal Prices Used for Base Case Economic Analysis for the Jiama Project

	Metal with VAT Price ⁽¹⁾		Metal in Cone VAT	centrate with Price	Metal in Concer VAT 1	ntrate without Price
Metal	RMB	US\$	RMB	US\$	RMB	US\$
Copper	55,000/t	8,112.09/t	49,275/t ⁽²⁾	7,267.70/t	42,115.39/t	6,211.71/t
Molybdenum			300,000/t	44,247.79/t	256,410.26/t	37,818.62/t
Gold	200/g	917.51/oz	166/g	761.53/oz	166/g	761.53/oz
Silver	3,500/kg	16.06/oz	2,712.5/kg	12.44/oz	2,318.38/kg	10.64/oz
Lead			12,500/t	1,843.66/t	10,683.76/t	1,575.78/t

Notes:

(1) VAT is 17% for all metals except gold; gold sales are not subject to VAT.

(2) Cu price in copper concentrate includes a grade bonus of RMB600/t based on the concentrate sales contract as the copper concentrate to be produced by Jiama is expected to have an average Cu grade of 26%, which is 6% higher than the base Cu grade of 20%.

PPENDIX	∨-В	IND	EPENDEI	NT TECHNICAL RE	JIAMA MINI
vhich	2025 26,855 648 50.87 844	$\begin{array}{c} 1,131\\ 107\\ 118\\ 216\\ \end{array}$	$ \begin{array}{c} 1,573 \\ 232 \\ 18 \\ 1,560 \\ 1,560 \end{array} $	350 218 141 709 132 54 665 566 366 366	331 49 15.5 0.2630 87 12.9
IPO, v	2024 26,268 554 54.86 1,185	1,106 92 127 304	1,629 240 19 5 1,615	350 218 141 709 134 54 108 610 610	744 110 14.5 0.2866 213 31.5
posed v.	2023 27,600 587 49.08 1,163	$1,162 \\ 97 \\ 114 \\ 298 \\ 298$	1,672 247 20 6 1,657	350 218 144 712 165 134 134 154 643	777 115 13.5 13.5 243 35.8
the NH	2022 538 47.49 586	1,242 89 110 150	${1,592 \\ 235 \\ 19 \\ 6 \\ 1,579 $	350 145 145 145 105 54 678 678 576	710 105 12.5 0.3405 242 35.7
r for tl ılating	2021 31,547 788 50.04 529	$1,329 \\ 131 \\ 116 \\ 116 \\ 136$	1,711 252 21 21 6 1,697	257 257 144 619 54 857 728 561 561	334 49 11.5 0.3712 124 18.3
sponso n calcu	2020 23,237 546 41.28 1,317	979 91 338 338	1,503 222 18 1,489	261 218 218 606 54 55 558 558 538 538	497 73 10.5 0.4046 201 29.7
used i	2019 33,310 784 62.38 1,115	1,403 130 145 286	$1,963 \\ 290 \\ 25 \\ 7 \\ 1,946$	275 218 152 646 95 173 173 161 161	1,085 160 9.5 478 70.6
ernatic od was e ct	2018 32,148 738 55.95 786	1,354 123 130 202	$ \begin{array}{r} 1,808 \\ 267 \\ 21 \\ 21 \\ 6 \\ 1,793 \end{array} $	344 147 147 165 173 173 857 728 728	901 133 8.5 8.5 433 63.9
old Int metho: Proje	2017 31,428 684 52.58 707	$1,324 \\ 1114 \\ 122 \\ 181$	1,740 257 19 6 1,728	399 145 145 112 173 54 739 628	801 118 7.5 420 61.9
uina G iscount Jiam	2016 31,771 691 49.65 808	$11338 \\ 1115 \\ 1115 \\ 207 \\ 207$	1,775 262 20 6 1,762	399 218 146 113 54 772 113 656	829 122 6.5 473 69.8
Jiti, CP year di or the	2015 35,929 750 61.43 1,330	$1,513 \\ 125 \\ 142 \\ 341 \\ 341$	2,121 313 25 25 25 25 7 2,103	399 218 160 115 1777 115 173 54 1,099 165 934	1,100 162 5.5 0.6225 685 101.0
d by C of the e 21.8 lysis f	2014 27,485 505 46.49 1,220	$1,158\\84\\108\\313$	1,662 245 18 5 1,650	535 535 536 537 535 535 535	701 103 4.5 4.5 70.2 70.2
rovide niddle Tabl ic Ana	2013 30,662 625 50.32 1,096	1,291 104 117 281	1,793 264 20 6 1,779	402 141 141 173 54 791 119 672	839 124 3.5 0.7396 620 91.5
was p . The n onom	2012 35,598 726 55.49 1,281	1,499 120 328 328	2,077 306 23 23 23 23 23 23	453 155 826 826 173 173 173 856 856 7	1,001 148 2.5 0.8062 807 119.0
roject ase Ec	2011 23,255 522 758 4,278 18.06	979 87 194 46	$1,407 \\ 208 \\ 14 \\ 1,398 \\ 1,398 \\ 1$	385 117 99 99 1172 99 99 99 99 99 99 90 90 90 90 85 75 77	30 15 2 1.5 1.5 1.9
/ calcu iama F ase C	2010 8,401 9.67 115 8,241 6.77	354 24 30 88	15 533 79 6 529 529	135 85 85 85 90 90 90 90 90 11 20 112 85 85 85 85 85 85 85 85 85 85 85 85 85	58 -422 -62 0.5 -404 -59.6
ble 21.8). A discount rate of 9% for the NP)ASIA considers generally reasonable for the . F	al Production La Production Cu Production in Cu Concentrate (t) Au Production in Cu Concentrate (kg) Ag Production in Cu Concentrate (t) Mo Production in Pb Concentrate (t) Ag Production in Pb Concentrate (t)	tal Sales Income Cu Production in Cu Concentrate (RMB M)	Ag Production in Pb Concentrate (RMB M) Total Sales Revenue (RSB M) Total Sales Revenue (USS M) Sales Tax 10% of VAT (RMB M) Cu Concentrate Transportation Credit (RMB M) ⁽¹⁾ Income after Sales Tax (RMB M)	rating Cost Mining Cost (RMB M) Mining Cost (RMB M) G&A and Other Cost (RMB M) Total Operating Costs (RMB M) Total Operating Costs (USS M) Total Operating Costs (USS M) Total Operating Costs (USS M) Total Operating Costs (RMB M) Taxable Income (RMB M) Income Tax @15% (RMB M) After Tax Income (RMB M) After Tax Income (RMB M) Total Capital Costs (RMB M) Working Capital (RMB M)	VAT Refund (RMB M) Fixed Asset Remnant Value (RMB M) After Tax Cash Flow (RMB M) After Tax Cash Flow (USS M) Years to Discount at End of 2009 Discount Factor (g9% Discounted Cash Flow (USS M) Discounted Cash Flow (USS M)

V-B-113

<u>Item</u>	2026	2027	2028	2029	2030	2031	2032	<u>2033</u>	2034	2035	2036	2037	2038	2039	2040	Total
Metal Production	29,379 681 56.21 547	21,626 1 439 42.11 819	21,778 2 425 45.26 913	1,712 2 458 44.66 777	1,687 2 446 50.01 626	2,897 2 450 54.55 756	1,646 2 418 40.49 905	1,498 1 452 41.49 1367	9,197 2 391 36.00 1646	4,408 2 496 48.90 796	3,496 2 493 42.90 954	6,638 2 465 43.47 710	0,043 1 304 25.32 1030	5,959 221 17.97 1169	6,029 ' 149 11.46 1 964	772,990 16,120 ,364.19 28,820 12,519 24.84
Au Production in Cu Concentrate (RMB M)	$1,237 \\ 113 \\ 130 \\ 140$	911 73 98 210	917 71 105 234	914 76 104 199	913 74 116 161	964 75 126 194	912 69 94 232	905 75 96 351	808 65 83 422	1,028 82 113 204	990 82 99 245	$1,122 \\ 77 \\ 101 \\ 182 \\ 182$	844 50 59 264	672 37 42 300	254 25 27 247	32,555 2,676 3,163 7,390 134
Total Sales Revenue (RMB M)	1,621 239 19 6 1,608	$1,291 \\ 190 \\ 14 \\ 4 \\ 1,282 \\$	1,327 196 15 4 1,317	1,2931911441,284	$1,264 \\ 186 \\ 14 \\ 1,255 \\ 1,255$	1,359 201 15 5 1,349	$1,307 \\ 193 \\ 14 \\ 4 \\ 1,297 \\ 1,297 \\$	1,427 210 16 1,415	1,379 203 16 4 1,367	1,428 211 16 5 1,416	1,415 209 16 5 1,404	1,482 219 17 5 1,470	1,217 180 13 4 1,208	1,050 155 11 3 1,042	552 81 6 1 548	45,973 6,781 520 155 45,607
Mining Cost (RMB M) Processing Cost (RMB M) G&A and Other Cost (RMB M) Total Operating Costs (RMB M) Total Operating Costs (USS M)	350 218 146 714 105	350 218 127 695	350 218 696 103	350 218 127 695	350 218 126 694	350 218 130 698	350 218 127 695	350 218 130 698	350 218 125 693	350 218 134 104	350 218 132 103	350 218 139 707	350 218 123 691	298 218 622 92	352 352 352	$105,78 \\ 6,471 \\ 4,068 \\ 21,116 \\ 3,114 \\ 3,$
Depreciation and Amortization (KMB M) Resource Tax @RMB15/t of ore (RMB M) Taxable Income (RMB M) Income Tax @15% (RMB M) After Tax Income (RMB M) Total Capital Costs (RMB M)	118 54 722 108 614	118 54 415 62 353	118 54 449 67 382	118 54 417 63 354	118 54 58 389 330	1113 54 484 73 411 421	1113 54 435 65 370	1113 54 83 83 468	5 4 508 76 432	549 549 82 466	54 54 53 81 81 457	90 54 620 93 527	90 54 373 317 317	90 41 43 246 246	47/ 23 19 107	$\begin{array}{c} 4,052\\ 1,578\\ 1,578\\ 2,829\\ 2,829\\ 16,032\\ 2,767\\ 2,767\end{array}$
Environmental Bond/Closing Costs (RMB M) VAT Refund (RMB M) Fixed Asset Rennant Value (RMB M) After Tax Cash Flow (RMB M) After Tax Cash Flow (USS M) Years to Discount at End of 2009 Discount Factor (@9%	732 108 16.5 0.2412 177 26.0	471 69 17.5 0.2213 104 15.4	500 74 18.5 18.5 101 15.0	472 70 19.5 13.0 13.0	449 66 20.5 77 11.3	103 15 21.5 21.5 16 16 2.4	483 71 22.5 1438 0 69 10.2	581 86 23.5 77 11.3	544 80 80 1211 0 66 9.7	578 85 85 1111 0 64 9.5	569 84 26.5 58 58 8.6	617 91 27.5 58 8.5	433 64 5.5 5.5	380 56 29.5 30 30 4.4	107 322 47 30.5 30.5 3.4 3.4	35 88 88 107 17,477 2,578 2,578
Based on the assumptions listed above December 31, 2009. Subtracting the debt of a Project as of December 31, 2009 was RMB5,26 approximately 5.2 years starting from January 1	, the J approx 69 M (1, 2010	iama I cimatel US\$77 0.	roject y RMI '7.2 M	had a 3888 l). The	total a M (US paybac	fter-ta \$131.(sk peri	x disco M) a od to r	unted .t Dec	cash ember · all th	flow o 31, 2(e capit	f RMI 009, th al inve	36,157 ne afte sstmen	' M (U rr-tax] it for tl	IS\$908 NPV c ne Jian	f the f	as of Jiama ject is

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Sensitivity analyses (Table 21.9 and Figure 21.1) indicate that the NPV of the Jiama Project is very sensitive to variations in the metal prices and processing metal recoveries, moderately sensitive to variations in operating costs, and less sensitive to variations in capital costs.

 Table 21.9

 Sensitivity analysis for after-tax NPV as of December 31, 2009 for the Jiama Project

	A	After-Tax	NPV Variati	on (RMB	M)
Sensitivity Item Variation	-20%	-10%	Base Case	+10%	+20%
Metal Prices	2,401	3,835	5,269	6,703	8,138
Metal Recoveries	2,401	3,835	5,269	6,703	8,138
Operating Costs	6,520	5,895	5,269	4,644	4,019
Capital Costs	5,580	5,425	5,269	5,114	4,958
	-	After-Tax	NPV Variat	ion (US\$]	M)
Sensitivity Item Variation	-20%	After-Tax 10%	NPV Variat Base Case	ion (US\$ 1 +10%	M) +20%
Sensitivity Item Variation Metal Prices	-20% 354.1	After-Tax -10% 565.7	A NPV Variat Base Case 777.2	ion (US\$) +10% 988.7	M) +20% 1,200.2
Sensitivity Item Variation Metal Prices Metal Recoveries	-20% 354.1 354.1	After-Tax -10% 565.7 565.7	A NPV Variat Base Case 777.2 777.2	ion (US\$) +10% 988.7 988.7	M) +20% 1,200.2 1,200.2
Sensitivity Item Variation Metal Prices Metal Recoveries Operating Costs	-20% 354.1 354.1 961.7	After-Tax -10% 565.7 565.7 869.4	A NPV Variat Base Case 777.2 777.2 777.2	ion (US\$1 +10% 988.7 988.7 684.9	M) +20% 1,200.2 1,200.2 592.7

Figure 21.1 After-tax NPV sensitivity analysis for the Jiama Project

21.8 Environmental and Community Considerations

21.8.1 Environment

Environment protection is being taken seriously by the management at the Jiama Project, who are complying with Chinese requirements to achieve a responsible standard of environmental protection. On September 28, 2008, an environmental permit was issued for the construction phase of Jiama Project by the Ministry of Environment Protection of China in Beijing. An environmental assessment for the Project will be produced by government authorities following review of documents

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

and a site inspection by an expert panel at their pre-operations phase inspection, which is anticipated to take place around September 2010. A site soil and water conservation plan was approved by the Tibetan Autonomous Region Water Bureau on October 8, 2008.

Due to the high alpine, semi-desert conditions, where the evaporation rate is approximately twice the precipitation rate, the project is being developed as a zero discharge operation, hence it only requires a water supply (and not a water discharge) permit by the regulatory authorities. The current water permit, granted on October 8, 2008, allows 7,300 m³/day to be pumped from the Chikang River, a tributary of the Lhasa River, which eventually flows into the Brahmaputra River.

Waste water from the processing plant thickeners' overflow and the tailing filtering system will be recycled back to the flotation plant's production lines. Water consumption for the project is estimated at $43,396 \text{ m}^3/\text{day}$, of which $36,547 \text{ m}^3/\text{day}$ will comprise recycled water.

Environment protection measures for the mine site comprise:

- Water management: the site is being developed as a zero discharge operation, with an expectation of recycling all used process and TSF drainage water. A recycling rate of at least 84% is expected. Huatailong holds a current water permit for the extraction of 7,300 m³/day for top up and domestic water, which is taken from the nearby Chikang River, which also receives any surplus waste water from the site following treatment in accordance with Chinese national standards. Waste water treatment includes sewage treatment and reuse in the replanting program.
- Solid waste: waste rock from the open pits will initially be used to construct infrastructure foundations, particularly roads, after which surplus waste material will be placed on constructed waste dumps. Underground waste will be mainly left underground. Tailings will be mixed with cement for use as stope fill, while TSFs will be constructed in adjacent valleys to store the remaining tailings material (Table 21.10).
- **Dust and air quality mitigation**: including use of dust collectors (cyclones) and baghouses for the boiler houses, incinerator, the crushing and screening plant, and fine ore bin. Treated flue gas from these sources will be vented via stacks ranging in height from 20 m (crushing, screening, and fine bin areas) to 40 m (boilers). Other mitigation measures include the use of water sprays, including water trucks, use of paved or watered roads to reduce dust generated from mining and truck transport activities, and enclosure of dusty activities where possible. Personal protection devices are issued to workers to provide additional personal protection from dust.
- Noise control: methods of noise control include use of silencers, noise and vibration dampening on mobile equipment, enclosure of noisy equipment, use of insulation, and regular equipment maintenance. Company policy requires PPE use, such as ear muffs or ear plugs, for noise-affected workers.
- **Environmental monitoring**: A comprehensive air, water, and climatic monitoring plan will be put in place to build up an environmental baseline database. All analytical results are to comply with Chinese National Standards.
- **Rehabilitation**: a mine closure plan has been produced and approved as part of the Soil and Water Conservation Plan. The plan will be updated as the operation progresses. An Environmental Bond of RMB35 M (US\$5.2 M) is to be lodged with the Government within the first 5 years of operations.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Table 21.10Tailings Storage Facility for the Jiama Project

Design Capacity & Estimated Life	Comments
The TSF is designed to accommodate approximately 10 years production at the 12,000- tpd rate. This design life may be extended if significant quantities of tailings are used as goaf fill underground. Once the TSF is full a new TSF will be constructed in one of the many nearby valleys.	The TSF is being constructed in the valley above the Phase I mill site, with a storage capacity of 23.53 Mm ³ . At a production rate of 12,000 tpd (or 2.34 Mm ³ /a), the tailings will be pumped to a pressure filter station above the TSF, the moisture level of the tailings will be reduced to 15-18%, and the filtered tailings will then be conveyed to the TSF and stacked. The initial concrete faced, earth-fill dam wall will be 70 m high and 6 m wide and an upstream method of deposition adopted. The TSF is being designed with a 1 in 500-year flood design factor and seismic intensity Level 7, with a basic earthquake acceleration value of 0.15 g. When complete, the height of the stacked tailings will be 260 m, with an average slope of 1:4.
	The TSF has a catchment of 2.82 km ² . A drainage system is to be installed at the base of the tailings pile and side drains catching surface water, as well as drainage layers at 10 m intervals utilizing geotextile fabric mats and drainage pipes, will direct seepage water into this TSF drainage system. The water will be collected, treated, and then recycled through the processing plant.
	The surface of the TSF will be treated with a dust suppressant chemical to bind the material and minimize both erosion and dust generation.
	The small existing TSFs will be topsoiled and revegetated (as will the new TSF when it is full), as part of the implementation of the soil and water conservation plan.

21.8.2 Community

The Jiama Project has a policy of social responsibility towards the local community, with a focus on providing assistance and contributing towards social development, through financially supporting local economic development, education, employment, training initiatives, local transport, communications, drinking water supply, and other social initiatives such as assisting poor families and rectifying both contamination issues and outstanding debts due to the community that were generated by previous mining operations on the Jiama mine site.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Prior to mining operations being established in the area, the mine site was used for low-intensity grazing of yak and sheep with occasional scattered temporary shelters used by members of the nearby Jiama township, which is located about 4-km away. Land was acquired for the mine site and associated infrastructure corridors in compliance with PRC laws through both short-term and long-term leasing agreements, signed and approved by the local government authorities. Compensation for land and land use rights was and will be paid under these lease agreements in line with standard PRC guidelines. The community has, in general, welcomed the opportunity for employment in the area and has participated in ongoing dialogue with both Huatailong and the local government through the "Jiama Project Coordination and Development Management Committee" concerning the development and operation of the mine, potential environmental impacts and their management, and the scope and nature of community benefits to be generated by the development. Over RMB50 M (US\$7.4 M) has been expended to date by Huatailong through the implementation of its community development plan.

Huatailong intends to employ approximately 125 local Tibetan mine workers, is providing training and around thirty tertiary education scholarships to local people, has already employed approximately 26,000 days of contracted local labor at a cost of around RMB20 M (US\$2.9 M) and is ensuring that non-Tibetan staff are learning the local language.

21.9 Occupational Health and Safety

The Jiama Project has been under construction since June 2008 and is (or will be) conducting its operations in accordance with specific national laws and regulations covering occupational health and safety ("OH&S") in construction, mining, underground mining, production blasting and explosives handling, mineral processing, TSF design, hazardous wastes, environmental noise, fire protection and fire extinguishment, sanitary provisions, power provision, lightning and seismic protection, labor, and supervision.

To manage the health and safety of the workforce, the mine is implementing an OH&S management system in line with national standards, with OH&S training of 30 workers currently in progress and regular medical checks for all employees. When mining operation commences, there will be a medical clinic on site with one doctor and three nurses, but in the meantime the Jiama Community Hospital serves the mine community. Safety statistics for the mine to date show a record of no significant injuries. An environmental emergency response plan is in place for the management of chemical spill, flood, fire, etc.

The mine holds current pre-evaluation approvals issued by the Tibet Autonomous Region Safety and Supervision Bureau for both the mine and the TSF. Safety Assessments are expected to be conducted by the end of 2010, following which safety permits for the mine and the TSF are expected to be issued.

21.10 Risk Analysis

When compared with many industrial and commercial operations, mining is a relatively highrisk business. Each orebody is unique. The nature of the orebody, the occurrence and grade of the ore, and its behavior during mining and processing can never be accurately predicted.

Estimations of the tonnes, grade, and overall metal content of a deposit are not precise calculations but are based on interpretation and on samples from drilling or channel sampling, which,

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

even at close sample spacing, remain very small samples of the entire orebody. There is always a potential error in the projection of sampling data when estimating the tonnes and grade of the surrounding rock, and significant variations may occur. Reconciliations of past production and ore reserves can confirm the reasonableness of past estimates but cannot categorically confirm the accuracy of future predictions.

Estimations of project capital and operating costs are rarely more accurate than $\pm 10\%$ and will be at least $\pm 15\%$ for projects in the planning stages. Mining project revenues are subject to variations in metal prices and exchange rates, though some of this uncertainty can be removed with hedging programs and long-term contracts.

Huatailong's Jiama Project reviewed in this ITR is still in the development stage, and mine production has yet not started, which brings an additional uncertainty for project. The life-of-mine production projections are largely based on a feasibility study.

In reviewing the Jiama Project, BDASIA has considered areas where there is perceived technical risk to the operation, particularly where the risk component could materially impact the projected production and resulting cash flows. The assessment is necessarily subjective and qualitative. Risk has been classified as low, moderate, or high based on the following definitions:

- High Risk: the factor poses an immediate danger of a failure, which, if uncorrected, could have a material impact (>15%) on the project cash flow and performance and could potentially lead to project failure.
- Moderate Risk: the factor, if uncorrected, could have a significant impact (>10%) on the project cash flow and performance unless mitigated by some corrective action.
- Low Risk: the factor, if uncorrected, could have little or no effect on project cash flow and performance.

Risk Component	Comments
Mineral Resources Low Risk	More than 97% of the currently defined mineral resources for the Jiama Project are contained within the I-1 mineralized body, which is hosted by a stratiform skarn zone along an interlayer fracture between the underlying marbles/limestones and overlying hornfels. This mineralized body is over 2,000-m long along strike and is close to 2,000-m wide in the down dip direction but still widely open. The mineralized body has good geological continuity and reasonable grade continuity. Measured and indicated resources have been defined by a drill hole spacing of 100 m by 100 m or 100 m by 200 m. Procedures and parameters used for resource estimation generally conform to industry standards.
	In addition to the measured and indicated mineral resources, there is also a large inferred resource defined by wider drill hole spacing of 200 m to 400 m. BDASIA believes that it is very likely that a significant portion of the inferred resource will be upgraded to the measured and indicated resource categories with additional drilling and sampling. Furthermore, the I-1 mineralized body is widely open in the down-dip direction, indicating that there is a significant additional exploration potential.
Ore Reserves Low to Moderate Risk	Current open-pit and underground ore reserves for the Jiama Project were defined by the Changsha Institute, using generally appropriate economic and technical parameters and the computer resource model produced by BDASIA. Only measured and indicated resources were used to estimate the proved and probable reserves. Appropriate additional mining dilution factors and mining recovery factors have also been applied in reserve estimation. Currently defined ore reserves are sufficient to support the mining operation at the planned 12,000 tpd or 3.6 Mtpa for approximately 30 years, and there is also a significant upside potential for the reserve estimates.
	However, the Jiama Project is at a late stage of mine development, and mining operation has not yet formally started. Mining and processing operation in the next several years will be crucial to prove that the reserve estimates are reasonable and appropriate for the planned mining and processing methods.
Open-Pit Mining Low Risk	The Tongqianshan pit is relatively small, and the pit slopes are generally conservative. There is some potential disruption from the voids within the open pit from prior underground mining activity. Procedures are required to ensure both personnel and equipment safety.
	The Niumatang pit is mining an ore zone that is shallow dipping, with a relatively high strip ratio over the life of the operation. High rock strength of both ore and waste indicates relatively conservative slope angles, but the height of the two major walls in excess of 500m requires a more detailed slope analysis for the final wall. The three-stage development of the open pit provides some risk mitigation. Huatailong has ongoing slope monitoring to track any slope movement.

Risk Component	Comments
Underground Mining Low to Moderate Risk	There is a shortage of detailed design, which elevates the overall risk of underground mining. BDASIA considers that the mine design is generally conservative given the size of stopes within a competent rock mass, with potential to further optimize mine design layouts; this provides some mitigation of the risk.
	The scale of the operation is appropriate for the size of the mineralized zone, and the production rates are considered achievable. There is potential to increase the mining area if significant inferred resources can be better defined.
Ore Processing Low to Moderate Risk	There is a low to moderate risk that the copper concentrate grades and particularly recoveries during the initial 2 years of the mine life may be one or two percentage points lower than forecast. This could be due to the copper-lead ore participating in the plant feed, accounting for about 25% to 33% of the total feed tonnage. The laboratory tests on this ore indicated copper recovery of 89% to 90%, which suggests a plant recovery of about 86% to 87%. However, the copper-molybdenum ore in the feed, participating with 67% to 75% of the total feed tonnage, is realistically expected to yield 90% copper recovery, thus bringing the overall copper recovery in the initial 2 years to approximately 88.5%.
Infrastructure Low to Moderate Risk	Access road conditions to the Jiama Project site are excellent. Although water is scarce in the mine area, a sufficient water source has been identified and is available for planned mine production and mine camp use. However, currently there is a power shortage for mine production during the winter dry months. The Tibet government has been executing a power-supply development plant for the period from 2006 to 2010, during which several new power generation plants will be constructed and the Central Tibet power grid will be connected to the national power grid in China. Electricity supply will be sufficient for Phase I production and Phase II expansion at Jiama when the development plan is completed.
Production Targets Moderate Risk	BDASIA believes that there is a degree of uncertainty for achieving the production targets during the ramp-up period of the mine life as the commercial production of Phase I concentrator was delayed from April 2010 to September 2010 and as construction of the Phase II concentrator will not start until December 2010, which is behind of the original schedule. Shortages in electricity supply could also slow the ramp-up process. However, once the two concentrators reach the designed production capacity and when the electricity supply problem is solved, the long-term production target of the project is considered achievable by BDASIA. Well managed backfilling of underground stopes will be important in ensuring long-term production schedules are achieved.

Risk Component	Comments
	There is a low to moderate risk that the copper metal production in the initial 4-year period will be lower by one to two percentage points for the forecast ore head values. The reason for this is discussed above under Ore Processing.
Operating Cost Low to Moderate Risk	Open-pit unit costs reflect the contract unit prices and are considered relatively low risk. Underground cost estimates are not well defined, and the potential for increased costs is higher than for the open pits. Therefore, BDASIA has made a 15% positive adjustment for the underground mining cost estimated by the Changsha Institute. BDASIA considers a mitigating factor to increased costs is that the underground design is conservative and there is some potential to reduce operating costs by increasing stope size. Further optimization of the open-pit design and the open-pit/underground mining ratio may also result in some savings on overall project mining cost.
	Processing costs and G&A and other costs are considered reasonable.
	BDASIA notes that no inflation factors have been included in the operating costs estimates.
Capital Cost <i>Low Risk</i>	More than half of the initial capital investment for constructing the 12,000-tpd day mine had been spent and was generally on budget at the end of 2009. The remaining initial capital expenditures are mostly for pre- production stripping of the Niumatang pit, development and equipping of the 6,000-tpd underground mine, and the construction of the Phase II 6,000-tpd processing plant. Any delays, such as power restrictions, in completing the remaining capital works on schedule will increase the initial capital costs for the project; however, BDASIA considers the overall risk of capital cost for the entire Jiama Project to be low.
Environment and Community <i>Low Risk</i>	Mitigation measures are being put in place to minimize environmental and social risks and to ensure regulatory environmental requirements are satisfied. Ongoing dialogue between Huatailong, the local government and local residents is being fostered through the activity of the "Jiama Project Coordination and Development Management Committee" with the objective of maintaining good community relations.
	All structures and infrastructure, including the TSF, are being designed to withstand a 1 in 500-year flood event and a Level-7 seismic event with an acceleration value of 0.15 g; however, it will be important to ensure that the tailings in the TSF have uniform size distribution at all times.
	A soil and water conservation plan has been approved and is being implemented.
	Dust generation in dry, cold, windy periods is low but nevertheless can pose a risk that will require careful management and adequate supplies of water.
Occupational Health and Safety Low Risk	Huatailong seeks to conduct its operations in accordance with the national safety standards and has a health and safety management system in place. The Project has maintained a good safety record to date.

22.0 DATE PAGE AND CERTIFICATES

The effective date of this ITR is November 17, 2010.

Signatures of the Qualified Persons for the ITR are as follows:

"ORIGINAL SIGNED BY AUTHOR"

Qingping Deng, Ph.D., C.P.G. November 17, 2010

"ORIGINAL SIGNED BY AUTHOR"

Peter D. Ingham, FAusIMM, CEng November 17, 2010

"Original Signed By Author"

Vuko M. Lepetic Q.P.Metallurgy of MMSA November 17, 2010

"ORIGINAL SIGNED BY AUTHOR"

Janet M. Epps, FAusIMM November 17, 2010

Qingping Deng, Ph.D., C.P.G.

Behre Dolbear Asia, Inc. 999 Eighteenth Street, Suite 1500, Denver, CO 80202 USA Phone: +1.303.620.0020 Fax: +1.303.620.0024 Email: gdeng@aol.com

I, Qingping Deng, Ph.D., C.P.G., do hereby certify that:

- 1. I am currently a senior associate of Behre Dolbear Asia, Inc., which is a member of the minerals industry advisory firm, Behre Dolbear Group Inc.
- 2. I graduated with a degree of B.Sc. in Geology and a degree of M.Sc. in Geology from the Central South Institute of Mining and Metallurgy in China in 1981 and 1984. I graduated with a degree of Ph.D. in Geology from the University of Texas at El Paso 1990.
- 3. I am a Certified Professional Geologist in good standing with the American Institute of Professional Geologists (certification number: 10515). I am a Qualified Professional Member (Geology and Ore Reserves) in good standing with the Mining and Metallurgical Society of America (certification number 01135QP). I am a Founding Registered Member in good standing with the Society for Mining, Metallurgy, and Exploration, Inc. (certification number 785284RM).
- 4. I have worked as a geologist, ore reserve specialist, and project manager for a total of 26 years since my graduation from university. I have been involved in exploration and mining projects in North, Central, and South America, Asia, Australia, Africa, and Europe.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am responsible for the overall supervision and preparation of the report titled of "Independent Technical Report on the Jiama Copper-Polymetallic Project in Metrorkongka County, Tibet Autonomous Region, the People's Republic of China" (the "Technical Report") dated November 17, 2010. I visited the property two times in conjunction with the Technical Report. The first visit was from August 16 to August 19, 2009, and the second visit was from December 15 to December 19, 2009.
- 7. I have not had prior involvement with the property that is the subject of the Technical Report.
- 8. As of the date hereof, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 9. I am independent of the issuer applying all of the tests in Section 1.4 of NI 43-101.
- 10. I have read NI 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated this 17th day of November 2010.

Signature of Qualified Person

"ORIGINAL SIGNED BY AUTHOR"

Qingping Deng, Ph.D., C.P.G.

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Peter D. Ingham, B.Sc., M.Sc., CEng, FAusIMM Behre Dolbear Australia Pty Ltd. Level 9 80 Mount Street, North Sydney, NSW, 2060, Australia Phone: +61.29954 4988 Fax: +1.303.620.0024 Email: ingham@ihug.com.au

I, Peter D. Ingham (B.Sc., M.Sc, FAusIMM, MIMMM, CEng), do hereby certify that:

- I am General Manager Mining of Behre Dolbear Australia Pty Limited ("BDA") of Level 9, 80 Mount Street, North Sydney, NSW 2060, Australia.
- 2. I graduated with a Bachelor of Science degree in Mining from Leeds University, England in 1975 and a Master of Science degree in Mineral Production Management from Imperial College of Science and Technology in 1980.
- 3. I am a Fellow of the Australasian Institute of Mining and Metallurgy and Member of the Institute of Materials, Minerals and Mining, UK. I am a Chartered Engineer (CEng) of the Engineering Council of UK.
- 4. I have worked as a mining engineer and a project manager for a total of 34 years since my graduation from university. I have been involved in both open-pit and underground mining projects in Europe, Africa, Australia, and Asia. My experience includes operational expertise in operations management, mining contract management, project assessment and acquisition, operational audits and trouble-shooting, and tenement and title issues.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am responsible for the preparation of Section 21.1 Mining Operations, part of Section 17.2 Ore Reserve Estimates, and statements relevant to mining operations of the report titled of "Independent Technical Report on the Jiama Copper-Polymetallic Project in Metrorkongka County, Tibet Autonomous Region, the People's Republic of China" (the "Technical Report") dated November 17, 2010. I visited the property in conjunction with the Technical Report from December 15 to December 19, 2009.
- 7. I have not had prior involvement with the property that is the subject of the Technical Report.
- 8. As of the date hereof, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 9. I am independent of the issuer applying all of the tests in Section 1.4 of NI 43-101.
- 10. I have read NI 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated this 17th day of November 2010.

Signature of Qualified Person

"Original Signed By Author"

Peter D. Ingham, FAusIMM, CEng

Vuko M. Lepetic, Q.P.Metallurgy Behre Dolbear International Ltd.

Winchester House, 259.269 Old Marylebone Road, London, NW 1 5RA, UK Phone: +4420.7170.4034 Email: vl_carpediem@yahoo.com

I, Vuko M. Lepetic, Dipl.Ing., M.SC., Q.P.Metallurgy, do hereby certify that:

- 1. I am currently a Senior Associate of Behre Dolbear International Ltd. with an address of Winchester House, 259.269 Old Marylebone Road, London, NW 1 5RA, United Kingdom.
- 2. I graduated with a degree of Dipl.Ing. in Mining Engineering at the School of Mining and Geology, University of Belgrade, Yugoslavia in 1961. I received a M.Sc. degree in Mineral Engineering from the Henry Krumb School of Mines, Columbia University, New York, USA in 1964.
- 3. I am a Qualified Professional Member (Metallurgy) in good standing with the Mining and Metallurgical Society of America (certification number 01382QP).
- 4. I have worked as a mineral processing specialist for 45 years in the mining industry since my graduation. I have been involved in mineral processing and mining projects in North, Central, and South America, Asia, Australia, Africa, and Europe.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am responsible for the Section 16.0 Metallurgical Testing and Mineral Processing and other mineral processing-related statements in the report titled "Independent Technical Report on the Jiama Copper-Polymetallic Project in Metrorkongka County, Tibet Autonomous Region, the People's Republic of China" (the "Technical Report") dated November 17, 2010. I visited the property one time in conjunction with the Technical Report. The visit was from December 15 to December 19, 2009.
- 7. I have not had prior involvement with the property that is the subject of the Technical Report.
- 8. As of the date hereof, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 9. I am independent of the issuer applying all of the tests in Section 1.4 of NI 43-101.
- 10. I have read NI 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated this 17th day of November 2010.

Signature of Qualified Person

"ORIGINAL SIGNED BY AUTHOR"

Vuko M. Lepetic Q.P.Metallurgy

INDEPENDENT TECHNICAL REPORT FOR THE JIAMA MINE

Janet M. Epps, M.Env.Stud., B.Sc., FAusIMM

Behre Dolbear Australia Level 9, 80 Mount Street, North Sydney, NSW, 2090 Australia Phone: +61 2 9954 4988 Fax: +61 2 9929 2549 Email: emcint@bigpond.com

I, Janet M. Epps, M.Env.Stud., FAusIMM, do hereby certify that:

- 1. I am a Senior Associate of Behre Dolbear Australia Pty Limited of Level 9, 80 Mount Street, North Sydney, NSW 2060, Australia.
- 2. I graduated with degrees in Bachelor of Science in Geology (1971) from the University of New England, Armidale, and Master of Environmental Studies (1980) from Macquarie University, Sydney, both in NSW, Australia.
- 3. I am a Fellow of the Australasian Institute of Mining and Metallurgy (Member number 101317).
- 4. I have worked as a professional Environmental Specialist for 35 years and previously worked as a geoscientist for a further 3 years.
- 5. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am responsible for Section 21.7 Environmental Considerations and Section 21.8 Occupational Health & Safety, together with the section concerning risk relating to these two areas, of the report titled "Independent Technical Report on the Jiama Copper-Polymetallic Project in Metrorkongka County, Tibet Autonomous Region, the People's Republic of China" (the "Technical Report") dated November 17, 2010. I visited the property from December 15 to December 19, 2009 in conjunction with producing the Technical Report.
- 7. I have not had prior involvement with the property that is the subject of the Technical Report.
- 8. As of the date hereof, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.
- 9. I am independent of the issuer applying all of the tests in Section 1.4 of NI 43-101.
- 10. I have read NI 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

Dated this 17th day of November 2010.

Signature of Qualified Person

"ORIGINAL SIGNED BY AUTHOR" Janet M. Epps, FAusIMM