


# Industry report on Global and China's cancer drug market

China Insights Consultancy



For and on behalf of

China Insights Industry Consultancy Limited

November 7, 2025

Name: Argen Dai 戴巧灵

Title: Founding Partner 创始合伙人

opyright © 2024 China Insights Consultancy. All rights

#### Terms and abbreviations

| Abb  | Terms                             | Abb   | Terms                                        |
|------|-----------------------------------|-------|----------------------------------------------|
| ADC  | antibody-drug conjugate           | ВСМА  | B-cell maturation antigen                    |
| ADCA | Adenocarcinoma                    | BL    | Burkitt Lymphoma                             |
| AE   | Adverse Event                     | BPDCN | Blastic plasmacytoid dendritic cell neoplasm |
| AGA  | actionable oncogenic alterations  | BRAF  | B-Raf Proto-On∞gene                          |
| Al   | Aromatase inhibitors              | BsAb  | Bispecific Antibody                          |
| AITL | Angioimmunoblastic T-Cell Lymphom | BsADC | Bispecific antibody-drug conjugate           |
| ALK  | Ana plastic Lymphoma Kinase       | BTKI  | Bruton's Tyrosine Kinase Inhibitor           |
| ALL  | Acute Lymphoblastic Leukemia      | B7H3  | B7 homolog 3 protein                         |
| AML  | Acute Myeloid Leukemia            | B7H4  | B7 homolog 4 protein                         |
| ANDA | Abbreviated New Drug Application  | CAF   | Cancer-associated fibroblast                 |
| APC  | Antigen-Presenting Cell           | CC    | Cervical Cancer                              |
| API  | Active Pharmaceutical Ingredient  | CDE   | Center for Drug Evaluation                   |
| AR   | Androgen Receptor                 | CDH6  | cadherin 6                                   |
| ARG  | Andarginase                       | CDK   | Cyclin-Dependent Kinases                     |
| BC   | Breast Cancer                     | CE    | European Community                           |

CIC 约识咨询

Source: China Insights Consultancy

#### Terms and abbreviations (2/7)

#### Terms and abbreviations

| Abb      | Terms                                          | Abb    | Terms                                       |
|----------|------------------------------------------------|--------|---------------------------------------------|
| CEL      | Chronic Eosinophilic Leukemia                  | CRC    | Colorectal Cancer                           |
| CGT      | Cell and Gene Therapies                        | CRPC   | castration-resistant prostate cancer        |
| cGMP     | Current Good Manufacturing Practice            | csco   | Chinese Society Of Clinical Oncology        |
| CHMP     | Committee for Medicinal Products for Human Use | CTA    | Clinical Trial Application                  |
| CHOL     | Cholangiocarcinoma                             | CTLA-4 | Cytotoxic T-lymphocyte associated protein 4 |
| CLDN18.2 | Claudin-18.2                                   | DAR    | Drug-to-Antibody Ratio                      |
| CLL      | Chronic Lymphocytic Leukemia                   | DC     | Dendritic cell                              |
| СМС      | Chemistry, Manufacturing and Control           | DCR    | Disease Control Rate                        |
| CML      | Chronic Myeloid Leukemia                       | DLBCL  | diffuse large b-cell lymphoma               |
| CMML     | Chronic Myelomonocytic Leukemia                | DOR    | Disease Duration of Response                |
| CMS      | Concerned Member State                         | EC     | Esophageal Cancer                           |
| CNL      | Chronic Neutrophilic Leukemia                  | ECM    | Extracellular matrix                        |
| COLO     | Colon Cancer                                   | EGFR   | Epidermal Growth Factor Receptor            |
| COPD     | Chronic Obstructive Pulmonary Disease          | EMA    | European Medicines Agency                   |
| CRBN     | Cereblon                                       | ET     | Essential Thrombocythemia                   |

CIC 灼识咨询

Source: China Insights Consultancy

#### Terms and abbreviations

| Abb    | Terms                                               | Abb   | Terms                                    |  |
|--------|-----------------------------------------------------|-------|------------------------------------------|--|
| FDA    | Food and Drug Administration                        | HCC   | Hepatocellular Carcinoma                 |  |
| FGF    | Fibroblast growth factor                            | HCL   | Hairy Cell Leukemia                      |  |
| FISH   | fluorescence in situ hybridization                  | HER2  | Human Epidermal Growth Factor Receptor 2 |  |
| FL     | Follicular Lymphoma                                 | HER3  | Human Epidermal Growth Factor Receptor 3 |  |
| FLT3   | fms-like tyrosine kinase 3                          | HL    | Hodgkin Lymphoma                         |  |
| FRa    | Folate receptor a                                   | HNC   | Head and Neck Cancer                     |  |
| GBC    | Gallbladder Cancer                                  | HNSCC | Head and Neck Squamous Cell Carcinoma    |  |
| GC     | Gastric Cancer                                      | HPV   | Human Papillomavirus                     |  |
| GCP    | Good Clinical Practice                              | ICI   | Immune Checkpoint Inhibitor              |  |
| GLP    | Good Laboratory Practice                            | IC50  | Half Maximal Inhibitory Concentration    |  |
| GM-CSF | Granulocyte/monocyte colony-stimulating factor      | IFN-Y | Interferon $\gamma$                      |  |
| GOJ    | gastro oesophageal junction                         | IHC   | Immun ohistochem istry                   |  |
| GPRC5D | G protein-coupled receptor class C group 5 member D | IL    | Interleukin                              |  |
| Gp100  | Glycoprotein 100                                    | IND   | Investigational New Drug                 |  |
| GVHD   | Graft-Versus-Host Disease                           | ISH   | In Situ Hybridization                    |  |
|        |                                                     |       |                                          |  |



Source: China Insights Consultancy

#### Terms and abbreviations (4/7)

#### Terms and abbreviations

| Abb   | Terms                                              | Abb      | Terms                                                                                                                                                                                                                       |
|-------|----------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITD   | Internal Tandem Duplication                        | MMP-2    | Matrix Metalloproteinase 2                                                                                                                                                                                                  |
|       |                                                    |          |                                                                                                                                                                                                                             |
| KRAS  | Kristen Rat Sarcoma Viral Oncogene Homolog         | MN       | Myeloid Neoplasm                                                                                                                                                                                                            |
| LAG-3 | Lymphocyte-activation Gene 3                       | MPN      | Myeloproliferative Neoplasms                                                                                                                                                                                                |
| LBL   | Lymphoblastic Lymphoma                             | MsAb     | Multispedific Antibody                                                                                                                                                                                                      |
| LN    | Lymphoid Neoplasm                                  | MSI      | Tumor Mutational Burden                                                                                                                                                                                                     |
| LPL   | Lymphoplasmacytic Lymphoma                         | MSLN     | Mesothelin Marginal Zone Lymphoma                                                                                                                                                                                           |
| mAb   | Monoclonal Antibody                                | MZL      | Marginal Zone Lymphoma                                                                                                                                                                                                      |
| MCL   | Mantle Cell Lymphoma                               | NCCN     |                                                                                                                                                                                                                             |
| MDS   | Myelodysplastic Syndromes                          | NDA      | New Drug Application                                                                                                                                                                                                        |
| MDSC  | Myeloid-derived Suppressor Cell                    | NDRC     | National Development and Reform Commission                                                                                                                                                                                  |
| MET   | Mesenchymal-epithelial Transition Factor           | NECC     | Neuroendocrine Carcinoma of Cervix                                                                                                                                                                                          |
| MGUS  | Monoclonal Gammopathy of Undetermined Significance | Nectin-4 | Nectin Cell Adhesion Molecule 4                                                                                                                                                                                             |
| MIIT  | Ministry of Industry And Information Technology    | NHL      | Non-Hodgkin Lymphoma                                                                                                                                                                                                        |
| MM    | Multiple Myeloma                                   | NK cell  | New Drug Application National Development and Reform Commission Neuroendocrine Carcinoma of Cervix Nectin Cell Adhesion Molecule 4 Non-Hodgkin Lymphoma Natural Killer Cell Nodular Lymphocyte-predominant Hodgkin Lymphoma |
| MMA   | Marketing Authorization Application                | NLPHL    | Nodular Lymphocyte-predominant Hodgkin Lymphoma                                                                                                                                                                             |

#### Terms and abbreviations

| Abb    | Terms                                            | Abb   | Terms                                      |  |
|--------|--------------------------------------------------|-------|--------------------------------------------|--|
| NMPA   | National Medical Products Administration         | PD-L1 | Programmed Death-ligand 1                  |  |
| NPC    | Nasopharyngeal Carcinoma                         | PD-1  | Programmed Cell Death Protein 1            |  |
| NPC    | National People's Congress                       | PFS   | Progression-free Survival                  |  |
| NRDL   | National Reimbursement Drug List 💝               | PGE2  | Prostaglandin E2                           |  |
| NSCLC  | Non-Small Cell Lung Cancer                       | PK    | Pharmacokinetic                            |  |
| NTRK   | Neurotrophic Tyrosine Receptor Kinase            | PMDA  | Pharmaceuticals and Medical Devices Agency |  |
| DRR    | Objective Response Rate                          | PMF   | Primary Myelofibrosis                      |  |
| os     | Overall Survival                                 | PN    | Parenteral Nutrition                       |  |
| PAAD   | Pancreatic Adenocarcinoma                        | PSMA  | Prostate-specific Membrane Antigen         |  |
| PARP   | Poly Adp-ribose Polymerase                       | PTK7  | Protein Tyrosine Kinase 7                  |  |
| PCALCL | Primary Cutaneous Anaplastic Large Cell Lymphoma | PV    | Polycythemia Vera                          |  |
| PCI    | Prophylactic Cranial Irradiation                 | RAS   | Rat Sarcoma                                |  |
| PCN    | Plasma Cell Neoplasms                            | RCC   | Renal Cell Carcinoma                       |  |
| PCNSL  | Primary Central Nervous System Lymphoma          | RDC   | Radionuclide-drug Conjugate                |  |
| PD     | Pharmacodynamic                                  | RET   | Rearranged during Transfection             |  |



Source: China Insights Consultancy

#### Terms and abbreviations (6/7)

#### Terms and abbreviations

| Abb   | Terms                                   | Abb   | Terms                            |                                              |
|-------|-----------------------------------------|-------|----------------------------------|----------------------------------------------|
| RMS   | Reference Member State                  | тсм   | Traditional Chinese Medicine     |                                              |
| ROS1  | ROS proto-on∞gene 1                     | T-DMI | Trastuzumab emtansine            |                                              |
| RT    | Radiation Therapy                       | T-Dxd | Trastuzumab deruxtecan           |                                              |
| R/R   | Relap sed/Refractory                    | TGF-β | Transforming growth factor-β     |                                              |
| SABR  | Stereotactic ablative radiotherapy      | Th 1  | T helper type 1 cell             | o,                                           |
| SAE   | Serious Adverse Event                   | TIL   | Tumor-infiltrating Lymphocyte    | All rights reserved.                         |
| SALCL | Systemic Anaplastic Large Cell Lymphoma | TIME  | Tumor immune microenvironment    | ights n                                      |
| scc   | Squamous Cell Carcinoma                 | TKI   | Tyrosine Kinase Inhibitor        |                                              |
| SCLC  | Small Cell Lung Cancer                  | TLR   | Toll-like receptor               | ultano                                       |
| SLL   | Small Lymphocytic Lymphoma              | TMB   | Tumor Mutational Burden          | s Cons                                       |
| SPC   | Summary of Product Characteristics      | TME   | Tumor microenvironment           | nsight                                       |
| TAA   | Tumor-associated Antigen                | TNBC  | triple-negative breast cancer    | China                                        |
| TACE  | Transarterial Chemoembolization         | TNF-α | Tumor Necrosis Factor-α          | Copyright © 2024 China Insights Consultancy. |
| TAM   | Tamoxifen                               | TRAE  | Treatment-Related Adverse Events | ight ©                                       |
| TAM   | Tumor-associated M2 macrophages         | Treg  | Regulatory T cell                | Copyr                                        |

#### Terms and abbreviations (7/7)

#### Terms and abbreviations

| Abb    | Terms                                         | 4 | Abb | Terms |  |  |
|--------|-----------------------------------------------|---|-----|-------|--|--|
| TROP2  | Trophoblast cell surface antigen 2            |   |     |       |  |  |
| UC     | Uterine Cancer                                |   |     |       |  |  |
| VBP    | Volume-Based Procurement                      |   |     |       |  |  |
| VEGF   | Vascular Endothelial Growth Factor            |   |     |       |  |  |
| VEGFR2 | Vascular Endothelial Growth Factor Receptor 2 |   |     |       |  |  |
| WM     | Waldenstrom's macroglobulinemia               |   |     |       |  |  |
| wt     | Wild Type                                     |   |     |       |  |  |
|        |                                               |   |     |       |  |  |



Source: China Insights Consultancy

#### Table of contents

#### 1. Overview of global and China pharmaceutical market

- 2. Overview of global and China cancer drug market
- 3. Comparison of different drug modalities
- 4. Overview of global and China lung cancer drug market
- 5. Overview of global and China breast cancer drug market
- 6. Overview of esophageal cancer drug market
- 7. Overview of nasopharynx cancer drug market
- 8 Overview of HNSCC drug market
- 9. Overview of GC&CRC drug market
- 10. Overview of cervical cancer drug market
- 11. Overview of urothelial carcinoma drug market
- 12. Overview of glioma drug market
- 13 Overview of blood tumor market
- 14. Others



Convright © 2024 China Insights Consultancy All

## China continues to deepen reforms in pharmaceutical review and approval, gradually transitioning the drug market towards a landscape led by innovative drugs (1/2)

China pharmaceutical Policy market

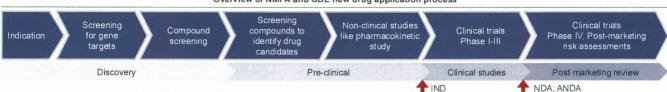
#### Overview of China's policy encouraging innovation in innovative drugs

| Department                    | Policy Name                            | Key Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Issuance Time |
|-------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| National Health<br>Commission | 《深化医药卫生体制改革 2023年<br>下半年重点工作任务》        | Promoting medical and pharmaceutical reform and innovation. Supporting drug R&D innovation, standardizing centralized procurement to ensure quality and availability of medications                                                                                                                                                                                                                                                                                                                | 2023-07       |
| CDE                           | 《药审中心加快创新药上市许可申请审评工作规范(试行)》            | This accelerated review and approval process targets three categories of innovative drugs: breakthrough therapy drugs, innovative drugs for children, and innovative drugs for rare diseases, expediting their market entry to meet the medication needs of relevant patients                                                                                                                                                                                                                      | 2023-04       |
| The State<br>Council          | 《"十四五"市场监管现代化规划》                       | Steadily enhance the safety, efficacy, and accessibility of drugs. Optimize management methods to accelerate the market entry of new and high-quality drugs. Improve rapid review and approval mechanisms for innovative drugs and vaccines, speeding up access to urgently needed drugs for clinical use and rare disease treatments. Strengthen guidance for the development of major innovative drugs. Encourage simultaneous domestic and international research and application for new drugs | 2023-04       |
| The State<br>Council          | 《"十四五"国民健康规划》                          | Deepen the reform of the drug and medical device review and approval system. Accelerate the review and approval of qualifying innovative drugs, urgently needed drugs in short supply, medical devices, and treatments for rare diseases                                                                                                                                                                                                                                                           | 2022-05       |
| NMPA                          | 《中华人民共和国药品管理法实施条例(修订草囊征求意见稿)》          | In the event of a patent dispute during a drug registration application, the parties may file a lawsuit in the people's court or apply for an administrative ruling from the State Council's patent administration department. During this period, the technical review of the drug will not be suspended                                                                                                                                                                                          | 2022-05       |
| CDE                           | 《单臂临床试验用于支持抗肿瘤<br>药上市申请的适用性技术指导原<br>则》 | The development strategy of single-arm dinical trials has significantly shortened the time to market for new drugs. In recent years, many new drugs have demonstrated highly promising efficacy data in the early stages of clinical research. As a result, an increasing number of development companies are opting to use single-arm dinical trials to support the marketing applications for anti-tumor drugs                                                                                   | 2022-03       |
| CDE                           | 《药审中心加快创新药上市申请<br>审评工作程序(试行)(征求意见稿)》   | The main focus is to encourage the research and development of new drugs to meet clinical needs, promptly summarize and apply experiences from emergency reviews during the pandemic, and accelerate the review process for innovative drugs                                                                                                                                                                                                                                                       | 2022-02       |



Source: CDE; NMPA; China Insights Consultancy

¥


## China continues to deepen reforms in pharmaceutical review and approval, gradually transitioning the drug market towards a landscape led by innovative drugs (2/2)

China pharmaceutical Policy

#### Overview of China's policy encouraging innovation in innovative drugs

| Department           | Policy Name                             | Key Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Issuance Time |
|----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| AIIT and others      | 《"十四五"医药工业发展规划》                         | Promoting the industrialization and application of innovative drugs and high-end medical devices, and improving the support system for pharmaceutical innovation                                                                                                                                                                                                                                                                                                                                                                                 | 2022-01       |
| The State<br>Council | 《"十四五"市场监管现代化规划》                        | Improving the rapid review and approval mechanisms for innovative drugs, vaccines, and medical devices to accelerate the review and approval process for urgently needed drugs for clinical use, treatments for rare diseases, and medical devices                                                                                                                                                                                                                                                                                               | 2022-01       |
| NDRC                 | 《"十四五"生物经济发展规划》                         | Developing synthetic biology technologies and promoting innovation in synthetic biology. Systematically advancing applications in areas such as new drug development, disease treatment, agricultural production material synthesis, environmental protection, energy supply, and new material development                                                                                                                                                                                                                                       | 2021-12       |
| NMPA                 | 《"十四五"国家药品安全及促进高质量发展规划》                 | The regulatory environment supporting high-quality industrial development is further optimized. The reform of the review and approval system confinues to deepen, approving a batch of urgently needed innovative drugs for clinical use, accelerating the market entry of innovative drugs with clinical value to promote public health. The evaluation capability of innovative products has significantly improved, enabling globally innovative drugs and medical devices applied for in China to be quickly launched in the domestic market | 2021-12       |
| The State<br>Council | 《"十四五" 全民医疗保障规划》                        | Improving the evaluation mechanism for drugs covered by medical insurance, strengthening the monitoring of the implementation of the medical insurance drug list and the evaluation of innovative drugs, supporting pharmaceutical innovation, and enhancing the accessibility of negotiated drugs                                                                                                                                                                                                                                               | 2021-09       |
| NPC                  | 《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》  | Improving the rapid review and approval mechanisms for innovative drugs, vaccines, and medical devices, accelerating the review and approval of urgently needed drugs and medical devices for clinical use and rare disease treatments, and facilitating the prompt domestic launch of urgently needed new drugs and medical devices already approved abroad                                                                                                                                                                                     | 2021-03       |
| NDRC and others      | 《关于扩大战略性新兴产业投资<br>培育壮大新增长点增长极的指导<br>意见》 | Implement a biotechnology benefit project to create a market for domestically innovated drugs and other products                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2020-09       |
| NMPA                 | 《突破性治疗药物申评工作程序<br>(试行)》                 | During clinical trials, applicants can apply for the breakthrough therapy designation for innovative or improved new drugs that treat life-threatening diseases or significantly improve quality of life, typically no later than the start of phase I trials                                                                                                                                                                                                                                                                                    | 2020-07       |

#### Overview of NMPA and CDE new drug application process



Non-clinical research refers to various toxicity tests conducted in laboratory conditions using experimental systems to evaluate drug safety, including single-dose toxicity tests, repeated-dose toxicity tests, reproductive toxicity tests, mutagenicity tests, carcinogenicity tests, various irritancy tests, dependence tests and other toxicity tests related to drug safety evaluation.

Animal experiments are widely used in medical, biomedical and veterinary research, and are essential means of drug development and preclinical testing, including toxicology and safety studies. They help us advance our scientific understanding, serve as models to study disease, help us develop and test potential new medicines and therapies. Animal experiments eliminate some potential drugs as either ineffective or too dangerous to use on human beings.

Good clinical practice (GCP) is an international ethical and scientific quality standard for designing, recording and reporting trials that involve the participation of human subjects. The GCP guidelines detail the requirements for trial documentation, protocol amendments, requirements such as indemnity, reporting lines for adverse events and provision of medical care for trial participants. Compliance with this standard provides public assurance that the rights, safety and wellbeing of trial subjects are protected and that clinical-trial data are reliable.

Clinical trials of biomedical interventions typically proceed through four phases:

- Phase I evaluates the tolerability and pharmacokinetics of a drug in human body.
- Phase II conducts a preliminary assessment of the efficacy and safety of a drug in a specific population with defined indication.
- Phase III evaluates overall efficacy and safety profile with an adequate sample size and robust control measures, to provide confirmatory evidence.
- Phase IV is the post-marketing research conducted after the approval, to investigate the efficacy and AEs under widespread use conditions

CIC 灼识咨询

Source: NMPA; China Insights Consultancy

12

ight @ 2024 China Insights Consultancy. All rights

The FDA new drug application process is a formal submission wherein drug sponsors propose that the FDA grants approval for a new pharmaceutical to be sold and marketed in the United States

FDA new drug application Overview of FDA new drug application process GLP requirements GCP requirements FDA filling & NDA, ANDA, Discovery Basic research Pre-clinicals Clinical IND submitted Clinicals Post-marketing prototype design applications risk assessments Mechanical parameters including In Human & Animal studies Materials selection Vitro testing Bench & Animal models Human effectiveness/efficacy Structure activity relationship Histopathology Laboratory & Animal models Scale-up specifications Laboratory & Computer models Nonclinical stability testing · Clinical quality assurance The FDA approval process

- The FDA's Center for Drug Evaluation and Research (CDER) in charge of overseeing the drug approval process before a drug is marketed. CDER review each drug closely using an independent team of clinicians and scientists who evaluate safety, efficacy and labeling of the drug product. After approval, FDA follow-up continues to make sure new drugs continue to be safe and effective.
- Generally, there are four phases of a drug approval process: 1.Pre-clinical, IND; 2.Clinical; 3.NDA Review; 4.Post-marketing risk assessments. The full research, development and approval process can last from 12 to 15 years. However, In order to incentivize the development of therapies to fill unmet needs for serious conditions, the FDA has developed various programs to expedite drug development and review. These four programs are: fast track, breakthrough therapy, accelerated approval, and priority review.
- In addition, supporting the development and evaluation of new treatments for rare diseases is also a key priority for the FDA The FDA has authority to grant orphan drug
  designation to a drug or biological product to prevent, diagnose or treat a rare disease or condition.

The FDA's Fast Track program is designed to facilitate the development and expedite the review of drugs to treat serious conditions and fill an unmet medical need. The purpose is to get important new drugs to the patient earlier. The Fast Track program is intended to help patients with serious conditions receive new drugs more quickly.

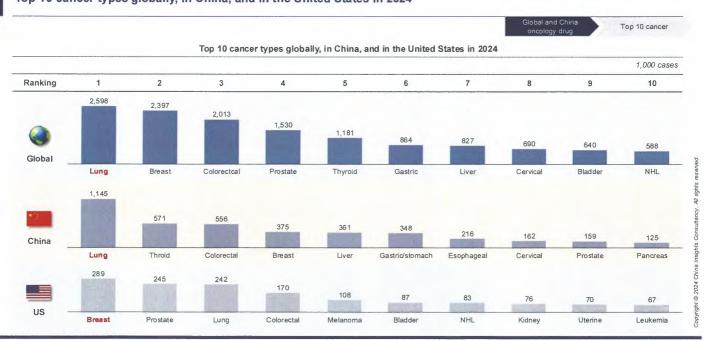
The Orphan Drug Act (ODA) was passed in 1983 to encourage the development of drugs for rare diseases. The FDA's Orphan Drug Designation program provides orphan status to drugs and biologics that are intended for the safe and effective treatment, diagnosis or prevention of rare diseases or disorders that affect fewer than 200,000 people in the US. The program provides incentives for sponsors to develop products for rare diseases.

Copyright © 2024 China Insights Consultancy. All rights reserv

#### **Table of contents**

Overview of global and China pharmaceutical market

#### 2. Overview of global and China cancer drug market


- Comparison of different drug modalities
- 4 Overview of global and China lung cancer drug market
- Overview of global and China breast cancer drug market 5.
- 6 Overview of esophageal cancer drug market
- 7. Overview of nasopharynx cancer drug market
- Overview of HNSCC drug market 8.
- Overview of GC&CRC drug market 9.
- 10. Overview of cervical cancer drug market
- Overview of urothelial carcinoma drug market
- Overview of glioma drug market 12
- 13. Overview of blood tumor market
- Others 14



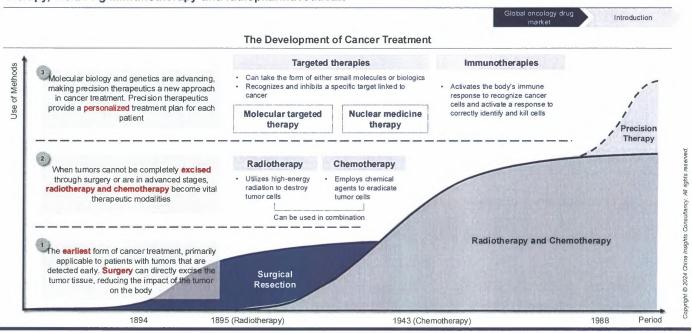


#### Top 10 cancer types globally, in China, and in the United States in 2024

Updated 2024 base year

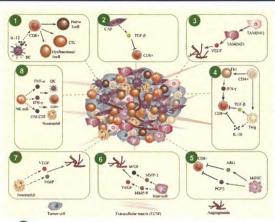


#### Epidemiology of the cancers


|                      |        |       | Epi   | idemiology of t | he cancers      |         | Can   | cer   | Epidemiology |
|----------------------|--------|-------|-------|-----------------|-----------------|---------|-------|-------|--------------|
| Canadatana           | Global |       |       | The U.S.        |                 |         | China |       | 127,540      |
| Cancer type          | 2024   | 2028E | 2033E | 2024            | 2028E           | 2033E   | 2024  | 2028E | 2033E        |
| Solid tumor          |        |       |       | Incide          | nce (thousand p | people) |       |       |              |
| CRC                  | 2,056  | 2,224 | 2,511 | 166             | 175             | 190     | 556   | 631   | 716          |
| Prostate Cancer      | 1,529  | 1,713 | 1,941 | 240             | 256             | 270     | 159   | 212   | 282          |
| GC                   | 864    | 1,040 | 1,291 | 27              | 29              | 31      | 348   | 330   | 313          |
| HNSCC                | 976    | 1,073 | 1,065 | 53              | 56              | 59      | 136   | 146   | 156          |
| Liver Cancer         | 827    | 953   | 1127  | 45              | 48              | 51      | 361   | 351   | 341          |
| CC                   | 690    | 742   | 804   | 14              | 15              | 15      | 162   | 183   | 208          |
| Urothelial Carcinoma | 512    | 571   | 653   | 68              | 75              | 84      | 82    | 87    | 93           |
| Esophageal Cancer    | 435    | 534   | 675   | 20              | 21              | 23      | 220   | 203   | 190          |
| Endometrial Cancer   | 382    | 412   | 448   | 68              | 71              | 75      | 79    | 85    | 91           |
| RCC                  | 393    | 427   | 465   | 63              | 67              | 71      | 62    | 61    | 60           |
| OC                   | 339    | 365   | 398   | 22              | 23              | 25      | 62    | 65    | 67           |
| SCLC                 | 320    | 352   | 399   | 36              | 39              | 42      | 172   | 196   | 223          |
| BTC                  | 253    | 286   | 333   | 14              | 15              | 16      | 98    | 89    | 82           |
| NPC                  | 120    | 135   | 146   | 2               | 2               | 2       | 51    | 50    | 50           |
| Blood cancer         |        |       |       | Prevale         | ence (thousand  | people) |       |       |              |
| NHL                  | 3,065  | 3,297 | 3,536 | 460             | 473             | 486     | 676   | 827   | 962          |
| ALL                  | 380    | 368   | 361   | 22              | 19              | 17      | 187   | 184   | 180          |
| AML                  | 207    | 213   | 219   | 27              | 28              | 29      | 25    | 26    | 26           |

CIC 灼识咨询

Source: GLOBOCAN; NCC; IARC; GHDx; China Insights Consultancy


. .

# Cancer treatment has evolved from surgical treatment, radiation therapy, and chemotherapy to precision targeted therapy, including immunotherapy and radiopharmaceuticals



#### Introduction of tumor microenvironment (TME)

- The tumor microenvironment (TME) is not simply a group of cancer cells, but rather a dynamic structure that is highly interactive with cancer cells and is shaped to a heterogeneous collection of infiltrating and resident host cells TME comprises different cell types, including immune cells, cancerassociated fibroblasts, as well as extracellular matrix (ECM). Tumor associated M2 macrophages (TAM) promote growth and induce immunosuppression. High infiltration of TAM within TME has been shown to be associated with poor prognosis in many tumor types
- The interactions among cellular and structural elements within the TME enables cancer cells to acquire invasive traits and disseminate from the primary site to distant locations, progressing through a intricate and multistep metastatic process



8 Natural killer (NK) cell can induce innate and adaptive immune responses through the secretion of pro-inflammatory cytokines, including IFN-v, tumor necrosis factor-alpha (TNF-α), and granulocyte/monocyte colony-stimulating factor (GM-CSF)

- T cell effector function and differentiation signals can be supported by the dendritic cell (DC) through the interleukin-12 (IL-12) secretion.
- Cancer-associated fibroblast (CAF) plays an immunosuppressive function by inhibiting CD8+ T cell infiltration and function via secreting transforming growth factor-beta (TGF-β)
- TAM contributes to angiogenesis through the secretion of vascular endothelial growth factor (VEGF)
- CD4 + T cell can play immunoactivative or immunosuppressive roles through the differentiation into T helper type 1 cell (Th1) and regulatory T cell (Treg)
- Myeloid-derived suppressor cell (MDSC) causes suppression of tumor-specific CD8 + T cell response by increasing the levels of prostaglandin E2 (PGE2) andarginase (ARG)
- Mast cell can promote tumor progression through angiogenesis development by secreting certain proteases, such as matrix metalloproteinase 2 (MMP-2) and MMP-9, and also by releasing VEGF and fibroblast growth factor (bFGF) from the ECM
- Similar to the mast cell, neutrophil is also capable of developing angiogenesis via secreting VEGF and MMPs



Source: Medical Research Review; China Insights Consultancy

#### Understanding of tumor immune microenvironment (TIME) is necessary for developing cancer immunotherapies

Challenge

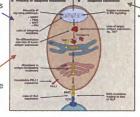
#### Impact of TIME in cancer therapy

- Tumor immune microenvironment (TIME) include tumor cells, immune cells, cytokines, etc., has been found its impact on immunotherapies, which has achieved good therapeutic effects in various cancers. The interactions between these components, which are divided into anti-tumor and pro-tumor, determine the trend of antitumor immunity Drugs targeting immune checkpoints, or their associated ligands have emerged as one of the most successful cancer immunotherapies approaches, especially the clinical impact of PD-1/PD-L1 blockade and anti-CTLA-4 monoclonal antibodies in cancer has been extensively studied over the past few decades
- The following table summarizes the key functions of some major immunotherapy targets in the TIME, with an emphasis on how the rapeutically enabling the TIME to generate an anti-tumor immune response:

| Treatment effects on TIME                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Promote the expansion and migration of CD8+ T cells and inhibit their apoptosis; amplification of CD4 and T cell subsets; proliferation, survival and activation of macrophages; activation of NK cell response |
| Promote the reduction of Treg cells, enhance the activity of effector T cells                                                                                                                                   |
| Increase populations of APC, NK, and CD8 + T cells                                                                                                                                                              |
|                                                                                                                                                                                                                 |

- > However, while current immunotherapies blocking PD-1 or CTLA-4 can activate anti-tumor T cells in many patients across multiple cancer types, treatments frequently fail, and some tumors become resistant after initial response. Only 10% to 30% of all solid tumors are responsive to anti-PD-1/PD-L1 therapies
- Barrier
- T cell in filtration blocking
- PD-L1 over-expression Recruitment of Tregs
- Hypoxia niche Acidic niche
- Inflammation
- Neovascularization
- Innervation **FCM** remodeling
- Drugs targeting hypoxia
- Anti-cancer drugs functional in acidic niche ECM targeted therapies
- Targeting innervation
- Targeting VEGF/VEGFR2
- against neovascularization Enhancing T cells infiltration
- T cell activation- checkpoint
- inhibitors

Opportunity




#### Drug resistance to immunotherapy and targeted therapy

- > According to the American Cancer Society, more than 90% of cancer patients die from varying degrees of drug resistance. Resistance to immunotherapy, particularly in cancer treatment, is a complex challenge that researchers are actively investigating. At present, PD-1/PD-L1 combination therapy is the main medical direction to solve drug resistance and realize patient individualized treatment
- > Despite high initial efficacy, targeted therapies eventually fail in advanced cancers, as tumors develop resistance and relapse. At present, EGFR-TKI has developed to the third generation, but the drug resistance is still inevitable

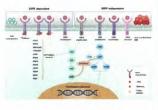
#### Introduction of different resistance mechanisms to immunotherapy

- Primary resistance: A cancer does not respond to an immunotherapy strategy. The mechanistic basis of lack of response to immunotherapy may include adaptive immune resistance
- Adaptive immune resistance: A
  mechanism of resistance where a
  cancer is recognized by the immune
  system but it protects itself by
  adapting to the immune attack



responded to immunotherap y but after a period of time it relapsed and progressed

Acquired


resistance: A

cancer initially

Drug resistance in PD-1/PD-L1<sup>1</sup> Based on the data collected by FDA, among the eight clinical trials, a total of 2624 patients with melanoma received anti-PD-1 antibody treatment, of which 1361 (52%) patients had primary or secondary resistance with progressive disease

#### Introduction of drug resistance to EGFR TKIs targeted therapy

- Resistance can be acquired during targeted therapies via alterations of drug targets due to the mutation of the target proteins or alterations in expression levels due to epigenetic changes.
- ☐ Third generation EGFR TKIs drug resistance<sup>2</sup> can be classified to:
  - EGFR-dependent (~40%)
    - EGFR pathway related drug resistance mutations, including T790M, C797S, Ex20ins mutations, etc.
  - EGFR-independent (~60%)
    - Bypass signal activation: HER2 amplification, BRAF mutation, MET amplification/overexpression
  - Histological transformation: SCLC, SCC transformation



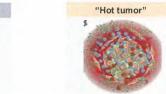
© 2024 China Insights Consultancy.

Source: Cell Press ; China Insights Consultance

Note: \(^1\text{The Lancet. Oncology. 2018 Feb;19(2):229-239. DOI: \(^10.1016/\s1470-2045(17)\)30846-x \(^2\text{Sec. Thoracic OncologyVolume 10 - 2020 | https://doi.org/10.3389/fonc.2020.602762



#### Limitations and unmet needs of immunotherapy and targeted therapy (2/3)


Global and China oncology drug Challenge

#### Low response rate of immunotherapy

- Despite several spectacular and successful immunotherapy trials of recent years, many cancer patients do not respond to immunotherapy, or their response remains short-lived, and the recurrence of the disease seems to be inevitable mainly due to the rapidly evolving resistance. The study shows that only 20-40% of patients respond to immunotherapy
- The use of PD-1/PD-L1 monoclonal antibodies significantly enhance the anti-tumor effect of cells and promotes the infiltration of cytotoxic T lymphocytes into tumor tissues. However, immunotherapy targeting the PD-1/PD-L1 only effective in some patients, and most of the patients do not benefit, and some patients had to stop treatment because of immune-related adverse events (irAEs). The emergence of this phenomenon may be closely related to the tumor microenvironment (TME), such as "cold tumors" with low expression of PD-1/PD-L1 and severe immune suppression

CIC 灼识咨询

#### Difference of "cold" and "hot" tumors



> No immune cells in the tumor > Low infiltration of CD8+ T cells

around the tumor

"Cold tumor

CD8 T cell

Tumor cell

 Drive immune cells (NK cells and CD8 T cells) to the tumor
 Eligible to immunotherapy Responsive efficacy of PD-1/PD-L1 in clinical trials

- According to a systematic review¹, with 16,400 patients from 91 clinical trials were included. PD-1/PD-L1 monotherapies has much lower ORR compared to combination of PD-1/PD-L1 monotherapy + chemotherapy. However, the DOR of PD-1/PD-L1 inhibitors is longer than the group of PD-1/PD-L1 inhibitors + chemotherapy
- On the other hand, combing PD-1/PD-L1 inhibitors with chemotherapy or targeted therapy will add complexity to treatment and may increase the risk of toxicity

| Number of studies | Intervention                               | ORR    | DOR (months) |
|-------------------|--------------------------------------------|--------|--------------|
| 93                | Anti-PD-1/PD-L1 mono                       | 17.75% | 12.39        |
| 7                 | PD-L1/PD-1 inhibitors + chemo              | 46.81% | 8.09 m       |
| 8                 | PD-L1/PD-1 inhibitors +<br>Immunotherapies | 12.25% | N/A          |



#### Tumor heterogeneity poses a barrier in drug development

#### Definition

- Tumor heterogeneity refers to the presence of diverse cell populations within a tumor, which can vary in terms of their genetic makeup, gene expression profiles, morphology, and behavior. It is well established that tumor heterogeneity is largely driven by aberrant changes in the TME, such as high mutational burden, hypoxic conditions and abnormal vasculature, which can lead to difference in drug sensitivity and prognosis, a major challenge in drug development and clinical diagnosis
- Tumor heterogeneity is prevalent in most cancer patients and is the major driver of acquired resistance to all forms of cancer therapy. Tumor heterogeneity can be classified to intra-tumor and inter-tumor heterogeneity

#### Intra-tumor heterogeneity

- Intra-tumor heterogeneity refers to the presence of more than one clone of cancer cells within a given tumor mass
- Intra-tumor heterogeneity can be further divided into spatial heterogeneity (differences between cells in different regions of the same tumor) and temporal heterogeneity (changes in tumor cells over time)

Clonal evolution and development of tumor heterogeneity



Studies¹ have shown that the inconsistent rate of PD-L1 expression between lung cancer primary and metastatic sites is reaches 38%, and the heterogeneity of EGFR mutations between primary and metastatic sites in NSCLC patients is as high as 28.6%

#### Inter-tumor heterogeneity

- ◆ Inter-tumor heterogeneity is the presence of different genetic alterations in different metastatic tumors from a single patient, have been identified in several tumor types
- Tumor heterogeneity between individuals
- There is existence of heterogeneity in genetic background among individuals with malignant tumors, which is manifested by regional and ethnic differences in genetic predisposition of different tumors
- Due to the innate physiological differences among different ethnic groups, along with the differences in living environment and dietary habits, there may be differences in the pathogenesis and development of cancer, which may cause additional clinical risks
  - Tumor heterogeneity within an individual
- Inter-tumor heterogeneity in the same individual is mainly manifested by the genetic and phenotypic differences between the same tumor cells (different lesions, such as primary tumors and metastases) in different organs
- The study<sup>2</sup> shows that glioblastoma exhibits extensive inter-tumor heterogeneity in sensitivity to anti-cancer drugs

Note: <sup>1</sup>J Exp Clin Cancer Res. 2019;38(1):193. Published 2019 May 14. doi:10.1186/s13046-019-1192-1. <sup>2</sup>BMC Cancer 19, 628 (2019). https://doi.org/10.1186/s12885-019-5861-4



Source: Cancers 2021; BMC Cancer; China Insights Consultancy

22

#### Global oncology drug market size, 2024

Updated 2024 base year

Market size 6 Global oncology drug market size, 2024 billion USD CAGR 2024-2033E 2018-2024 9.2% US 12.1% China 15.2% 11.0% 549.6 ROW 13.6% 4.5% 519.6 Total 490.8 12.5% 8.6% 460 0 428 1 253.8 395.4 362.2 225.3 328.6 295.1 178.9 162.9 262.1 146.8 227.2 132 118. 196.0 104.9 189.0 92.7 81.3 167.0 70.7 98.0 61.0 148.0 88.0 52.2 129 0 44.3 37.2 30.9 29.0 29.4 25.8 161.6 163.2 152. 157.0 160 5 237 145.8 138.3 19.9 129.6 1199 109.6 983 85.0 78.6 70.2 56.8 51.1 2019 2020 2025E 2026E 2027E 2028E 2029E 2030E 2031E 2032E 2033E 2018 2021 2022 2023 2024

Global and China oncology drug

Top 10 selling drugs

#### (

#### Global top-10 selling oncology drugs, 2024

| Brand name | Target  | Modality       | Generic name  | Company     | Indications                          | First FDA approval date | Global sale revenue in<br>2024 (million USD) |
|------------|---------|----------------|---------------|-------------|--------------------------------------|-------------------------|----------------------------------------------|
| Keytruda   | PD-1    | mAb            | pembrolizumab | Merk        | NSCLC, TNBC, CRC, GC etc             | 2014/09/04              | 29,480                                       |
| Darzalex   | CD38    | mAb            | daratumumab   | J&J         | MM, Amyloidosis                      | 2015/11/16              | 11,670                                       |
| Opdivo     | PD-1    | mAb            | nivolumab     | BMS         | NSCLC, RCC, etc.                     | 2014/12/22              | 10,920                                       |
| Tagrisso   | EGFR    | Small molecule | osimertinib   | AstraZeneca | NSCLC                                | 2015/11/13              | 6,540                                        |
| Imbruvica  | ВТКі    | Small molecule | ibrutinib     | Abbvie, J&J | WM. CLL/SLL. MCL. GVHD               | 2013/11/13              | 6,385                                        |
| Revlimid   | CRBN    | Small molecule | Ienalidomide  | BMS         | MM、MDS、MCL、FL                        | 2005/12/27              | 5,980                                        |
| Xtandi     | AR      | Small molecule | enzalutamide  | Astellas    | Prostate cancer                      | 2012/08/31              | 5,210                                        |
| Ibrance    | CDK 4/6 | Small molecule | palbociclib   | Pfizer      | HR+/HER2- breast cancer              | 2015/02/03              | 4,890                                        |
| Imfinzi    | PD-L1   | mAb            | durvalumab    | AstraZeneca | Urothelial carcinorna、NSCLC、<br>SCLC | 2017/05/01              | 4,560                                        |
| Perjeta    | HER2    | mAb            | pertuzumab    | Roche       | HER2+ breast cancer                  | 2012/06/08              | 4,320                                        |

CIC 灼识咨询

Source: China Insights Consultancy

#### Future trends of oncology drugs development (1/3)

Global and China oncology drug

Future trends

#### Emerging new drug modalities

The biopharmaceutical industry is undergoing revolution on oncology and other complex diseases with the innovation and new drug modalities. New modalities has
have been emerged in the past 20 years, including gene and cell therapies, RNA drugs, and complex biologics, such as tumor-infiltrating lymphocyte (TIL) therapy,
bispecific antibody-drug conjugates (BsADCs), multispecific antibodies, and etc.

#### Multispecific antibody

- Multispecific antibodies recognize two or more epitopes located on the same or distinct targets. This can add capacity through protein design, allowing the molecules to further address unmet medical needs
- There are over 140 multispecific antibody molecules currently in dinical testing. Many have shown promising results in early-phase clinical trials, indicating potential improvements in patient outcomes



Binding of T-cell-engaging BsAbs to CD3 has been shown to be a promising cancer therapy due to its ability to activate T cells without the restriction of the major histocompatibility complex and directly induce TAA and immune cells to form immune synapses

#### BsADCs



- BsADCs are an emerging and promising therapeutic modality in oncology, combining the specificity of bispecific antibodies with the cytotoxic potential of traditional ADCs
- Several bsADC candidates are showing promising results in preclinical studies. For instance, a novel T cell-redirecting bsADCs targeting GPRC5D and CD3 demonstrated potent antitumor activity in multiple myeloma models
- As of 2024/01, there are 10 bsADCs in clinical trials

#### Advantages of BsADCs

- Designed to simultaneously target multiple tumordriven proteins, potentially overcoming drug resistance
- Recognition of cells co-expressing both targets to increase tumor specificity and reduce off-target toxicity

#### Radiopharmaceuticals

 Radiopharmaceuticals are experiencing significant growth and innovation, driven by their dual roles in diagnostics and therapy, particularly in oncology

#### Key trends:

- Targeted radiopharmaceuticals: Radiopharmaceuticals are increasingly designed to target specific cancer cells. Active targeting strategies involve linking radioactive molecules to ligands that bind to cancer-specific receptors
- Supply chain and manufacturing: The production and distribution of radiopharmaceuticals face challenges due to their short half-lives and the need for just-in-time manufacturing
- New radioisotopes: Research is exploring alternative radioisotopes like Ac-225 and Pb-212 for both imaging and therapy

#### New targets and biomarkers in precision oncology

Precision oncology advances with drugs using new mechanisms, enabling broader therapeutic targets. This progress treats larger, biomarker-selected patient groups, enhancing the efficacy and personalization of cancer therapies

| I |   |    | =1 | = | 7 |
|---|---|----|----|---|---|
| ı | 8 | Po | 4  |   | ) |

Kinase remain at the forefront of precision oncology armamentariums each passing year introduces new kinase inhibitors boasting enhanced potency, heightened selectivity against particular kinase isoforms, or refined mutant targeting

 In addition to selectivity for individual mutations, inhibitors designed to selectively target single and compound acquired resistance mutations arising from treatment with earlier-generation ALK/ROS continue to be developed and approved

Besides the development of newer kinase inhibitors, the indications for which meaningful clinical benefit has been observed for established kinase inhibitors have also continued to expand

for specific cancers, contributing to additional drug endorsements

Examples of new inhibitors approved by FDA in 2023 Indication Name Target quizartinib FLT3 and FLT3-ITD AML RLY-4008 FGFR2 cholangiocarcinoma repotrectinib ROS1 and TRK ROS1 fusion-positive NSCLCs

Examples of inhibitors with expanded indications in NCCN guidelines:

| Name      | Target | Indication                                       |
|-----------|--------|--------------------------------------------------|
| alectinib | ALK    | ALK-positive inflammatory myofibroblastic tumors |

Advanced in mutation targeting



therapy advances



Immunomodulatory

BDC-1001 is an example of an ISAC consisting of a mAb conjugated to a Toll-like receptor TLR7/8 agonist. By binding to a cell-surface protein such as HER2, ISACs are designed to elicit a phagocytic response and T cell-mediated antitumor immunity

Composite biomarkers like tumor mutational burden (TMB) and microsatellite instability (MSI) status persist in customizing immunotherapeutic strategies

The checkpoint inhibitor dostarlimab received regulatory approval in combination with chemotherapy for patients with MSI-high advanced or recurrent

It is common practice in the industry to use companion diagnostic tests to detect a predictive biomarker, such as PD-L1, EGFR and HER2, in patients to evaluate their likely response to certain treatment

Note: ISAC= immune-stimulating antibody conjugates



Source: Cancer Discovery; China Insights Consultancy

#### uture trends of oncology drugs development (3/3)

endometrial cancers

Future trends

#### Increase clinical benefits in oncology treatment

**Trends** 

- Clinical trials are pivotal in oncology drug discovery and development, ensuring that safe and effective medications reach patients promptly. The focus of these trials has shifted from traditional studies of cytotoxic chemotherapy in broad histology-based populations to adaptive, biomarkerdriven evaluations of molecularly targeted agents and immunotherapies in specific patient
- In the era of precision oncology, numerous molecularly targeted therapies now achieve inhibition of their targets at doses lower than the maximum tolerated dose. The FDA announced the launch of Project Optimus to facilitate improved dose-optimization strategies through multiple mechanisms, including by randomization of patients to different dose levels
- The FDA has permitted early introduction of combination therapy involving established precision oncology drugs and novel treatments. This is typically preceded by a lead-in period for the new therapy, allowing for thorough evaluation of toxicity, safety, pharmacodynamics, and pharmacokinetics
- > PF-07284892 (ARRY-558) is an allosteric SHP2 inhibitor designed to overcome bypass signaling-mediated resistance when combined with inhibitors of various oncogenic drivers
- Preclinical data demonstrated that certain tumors, which had progressed on FDAapproved targeted oncogene inhibitors, could be resensitized by adding PF-07284892





Trial design revolution

- As lung cancer and breast cancer transition into the era of chronic disease management, the patient-centered treatment model has led to the emergence of subcutaneous preparations as a new trend in the development of cancer drugs in China
- Comprehensive diagnosis and treatment: comprehensive diagnostics, including genetic testing and biomarker analysis, enable personalized treatment plans tailored to the specific characteristics of the cancer. Comprehensive treatment involves a multidisciplinary team of specialists including oncologists, radiologists, surgeons, pathologists, and other healthcare professionals, which can improve patient outcomes and lead to a higher quality life
- Transition from traditional intravenous injection to subcutaneous injection: Most of the traditional antibody oncology drugs are administered intravenously, but long-term intravenous therapy will bring challenges to cancer patients and their families, such as loss of social labor, risk of complications and potential cost increase. Subcutaneous injection infusion time is short, saving patients' visit and stay in hospital, eliminating the cost of maintaining venous access every week.

patient benefits

#### **Table of contents**

- Overview of global and China pharmaceutical market
- Overview of global and China cancer drug market

#### Comparison of different drug modalities 3.

- Overview of global and China lung cancer drug market
- Overview of global and China breast cancer drug market 5.
- 6. Overview of esophageal cancer drug market
- Overview of nasopharynx cancer drug market
- 8. Overview of HNSCC drug market
- Overview of GC&CRC drug market 9.
- Overview of cervical cancer drug market
- 11. Overview of urothelial carcinoma drug market
- Overview of glioma drug market 12.
- 13. Overview of blood tumor market
- 14. Others





#### Analysis of different modalities of oncology biological drugs

#### Analysis of different modalities of oncology biological drugs

| Drug<br>Modalities                            | Monoclonal Antibody<br>(mAb)                                                             | Fusion Protein                                                                                              | Antibody-drug conjugate (ADC)                                                                                    | Bispecific Antibody (BsAb)                                                                                            | Multispecific Antibody<br>(MsAb)                                             | Cell and Gene Therapies<br>(CGT)                                                                                                                                             |
|-----------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                   | Laboratory-produced<br>molecules engineered to<br>target specific antigens               | Genetically engineered<br>molecules combining<br>multiple functional domains<br>or proteins into one entity | ADC combines cytotoxic drugs<br>with monoclonal antibodies for<br>targeted tumor destruction                     | Recombinant molecules designed to target two antigens or epitopes                                                     | Recombinant molecules<br>designed to target multiple<br>antigens or epitopes | Genetically modifying cultivated<br>cells to address specific genetic<br>conditions and directly modifying a<br>patient's DNA at the cellular level                          |
| Schematic<br>structure                        | 3/2                                                                                      | <b>CHANG</b>                                                                                                | 1 m                                                                                                              | dol.                                                                                                                  | 34                                                                           | 8                                                                                                                                                                            |
| Pros                                          | High specificity     Low toxicity                                                        | Enhancing the stability of functional proteins     Extending metabolic half-life                            | High specificity High selectivity Low systemic toxicity                                                          | Enhanced tumor specific     Reducing off-target toxic     Enhancing activation of ir     Potential for synergistic tl | ity<br>mmune œlls                                                            | Potential for long-term therapeutic effects     Personalized treatment approach                                                                                              |
| Cons                                          | <ul> <li>Targeting only one antigen</li> <li>Limited efficacy in some cancers</li> </ul> | Low expression levels     Poor stability compared to mAb                                                    | Challenges in payload stability and conjugation     Safety concerns                                              | Higher risk of immunoger     Cytokine storm     Limited dinical experience                                            | •                                                                            | Safety concerns, including risk<br>of insertional mutagenesis     Limited accessibility                                                                                      |
| Challenge of<br>Development<br>and Production | Low yield     High time and monetary costs     Challenges in process scaling             | Screening for the appropriate linker length     Difficulty in protein characterization analysis             | Site-specific quantitative conjugation of antibodies, payload, and linkers     Downstream production punfication | Low druggability     Targets selecting     Constructing expression     Achieving production puri                      |                                                                              | Suboptimal therapeutic efficacy     Severe adverse events     High development costs and reimbursement uncertainties     Overcoming immunogenicity and host immune responses |
| Representative<br>Drugs                       | • Keytruda®                                                                              | • Eylea®                                                                                                    | • Enhertu®                                                                                                       | Blincyto®                                                                                                             | • GNC-038 (CD19×PD-<br>L1×4-1BB×CD3)                                         | • Kymriah®                                                                                                                                                                   |

### Antibody . Linker

#### Introduction to ADC Drug

- ADC (Antibody-Drug Conjugate) is a revolutionary cancer treatment method that combines antibodies, cytotoxic drug(payload), and linker
- The working principle of ADC involves antibodies specifically binding to antigens on the surface of tumor cells, internalizing into the cell, and releasing payload to kill tumor cells, thus inhibiting tumor growth and spread
- The previous treatment types such as chemotherapy often can only achieve either potent cancer-killing properties or specificity, but not both. By bringing together specificity and potent cancer-killing properties, ADCs have shown to be able to provide patients with the ability to select a drug that is simultaneously more effective and safer than chemotherapies and the previous generation of precision oncology

|                         | Th                                                                                                                                                                                                                    | e evolution of the ADC drug develo                                                                                      | opment                                                                                                            |                                                                                                                                                                        |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Role and effect                                                                                                                                                                                                       | First-generation ADC                                                                                                    | Second-generation ADC                                                                                             | Third-generation ADC                                                                                                                                                   |
| Antibodies              |                                                                                                                                                                                                                       | Mouse-original or chimeric humanized antibodies                                                                         | Humanized antibodies                                                                                              | Fully humanized antibodies or Fabs                                                                                                                                     |
| Linkers                 | Connect antibody and payload. Determine the stability in the circulation, and the specific release of payload in target tissue                                                                                        |                                                                                                                         | Improved stability: cleavable and non-cleavable linkers                                                           | Stable in circulation; precise controi drugs<br>release into tumor sites                                                                                               |
| Payloads                | Payloads are cytotoxic agents that are released upon internalization<br>Selecting right payload is essential for inducing targeted cell death<br>while minimizing toxicity to normal cells.                           |                                                                                                                         | Potency, such as auristatins and mytansinoids                                                                     | High potency, such as DXd, PBDs, and tubulysin, and novel payloads like immunomodulators                                                                               |
| Conjugation methods     | Allow precise control over DAR, improving ADC homogeneity,<br>stability, and therapeutic index. Optimizing DAR and conjugation<br>strategies is crucial for enhancing ADC effectiveness in targeted<br>cancer therapy |                                                                                                                         | Random lysines and reduced<br>interchain cysteines                                                                | Site-specific conjugation                                                                                                                                              |
| DAR                     | Determines the number of drug molecules attached to each<br>antibody, impacting drug loading and efficacy                                                                                                             | Uncontrollable (2-8)                                                                                                    | 4-8                                                                                                               | 2-8                                                                                                                                                                    |
| Advantages              | I                                                                                                                                                                                                                     |                                                                                                                         | <ul> <li>Improved targeting ability</li> <li>More potent payloads</li> <li>Lower immunogenicity</li> </ul>        | Higher efficacy though in cancer cells with low antige     Improved DAR and stability and PK/PD     More potent payloads and less off-target toxicity                  |
| Disadvantages           | 1                                                                                                                                                                                                                     | Heterogeneity     Lack of efficacy and narrow TI     Off-target toxicity as premature drug loss     High immunogenicity | Heterogeneity     Fast clearance for high DARs     Off-target toxicity as premature drug loss     Drug resistance | Possible toxicity due to highly potent payloads     Catabolism may be different across species     Drug resistance     The linker demonstrates a degree of instability |
| Representative<br>Drugs | 1                                                                                                                                                                                                                     | Mylotarg®, Besponsa®                                                                                                    | Adcetris®, Kadcyla®                                                                                               | Polivy®, Enhertu®                                                                                                                                                      |



Source: STTT; China Insights Consultancy

#### From ADC to XDC

From ADC to XDC

#### Evolution from ADCs to XDCs



- The future trend of conjugated drugs will focus on new target antigens, effective payloads with novel mechanisms of action, new antibody and carrier forms, and so on. The selection of target indications and optimal structural combinations is currently a key focus of research and development
- ADC drug technology has expanded from original drug designs to XDC conjugation. Currently, there is significant attention on peptide-drug conjugates and radionuclide-drug, with various other novel conjugated drugs undergoing rapid development

|                         | Alternative formats for the antibody component of ADCs                 | Alternative formats for the                                 | payload component of ADCs                                                                             |
|-------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Conventional formats    | Monoclonal Antibody                                                    | Chemical drugs                                              | 3,00                                                                                                  |
| Alternative formats     | Bispecific antibody scFV/Fab Fusion protein Peptide Synthetic polymers | Radionudide Steroid PROTAC Biotin Polyethylene glycol (PEG) | <ul><li>Enzyme</li><li>TLR</li><li>Peptide</li><li>Microprotein</li><li>Nucleotide</li><li></li></ul> |
| Representative<br>Drugs | Bispecific ADC     BL-B01D1  Bispecific antibody                       | RDC (Radionuclide-drug conjugate)     Pluvicto®             | Radionuclide                                                                                          |

#### Barriers to ADC drug development

#### Targeting appropriate high-expression antigens:

- · Heterogeneity in drug binding sites
- Selecting an antigen target for ADCs is challenging due to the necessity of predominant expression on tumor cells, minimal expression in normal cells, extracellular localization for recognition by free ADCs, and non-secretory nature to prevent off-target binding and ensure safety

#### The antibody affinity needs to be moderate neither too strong nor too weak:

- The antibody should possess high specificity, low immunogenicity, promote effective internalization, and have a long halflife
- · Due to the presence of the "binding site barner (BSB)" in solid tumors, it is necessary to balance the affinity ofantibody

#### Key Elements of ADC Development Barriers



- ADC development is more complex than other targeted therapies due to the need for precise antibody-drug linkage
- The linker, acting as a bridge between the antibody and the drug, plays a crucial role in ADC safety by enabling precise control of drug release within cancer cells through accurate cleavage
- Decreased efficacy and increased toxicity can result from altered ADC and free payload blood concentrations

#### Limited variations of payload:

- Typically, only 2% of the drug reaches the tumor site after intravenous administration. Therefore, the effective payload should have high anti-tumor activity, with a single drug IC50 of 0.01-0.1nM
- · While possessing high toxicity, it is essential to maintain high stability

#### Site-specific conjugation as the mainstream conjugation technique:

- The conjugation technique determines the DAR and homogeneity of ADCs, which can be categorized into random conjugation and site-specific conjugation, with the latter being the mainstream approach
- High uniformity, preservation of the antibody's spatial structure, precise reaction control, and high conjugation efficiency are essential characteristics of the
  conjugation technique



Source: China Insights Consultancy

#### Summary of global ADC drug transactions

Drug modality

ADC transactions

#### Top 10 ADC drug collaboration transactions by global pharmaceutical companies (Sorted by Single Asset Transaction Amount, USD)

- > The total consideration is the largest ever for a single-asset collaboration transaction in the ADC space as of the Latest Practicable Date, according to CIC
- > Under our license and collaboration agreement with BMS, we and BMS plan to initiate multiple late-stage clinical trials of BL-B01D1 globally, as a front or late line of treatment, in mono or combo settings, for various solid tumors including lung cancer and BC in the next few years

| Rank | Date       | Transferor        | Transferee  | Transaction Details | Target    | Initial upfront payment,<br>Mn USD | Transaction Amount,<br>Mn USD |
|------|------------|-------------------|-------------|---------------------|-----------|------------------------------------|-------------------------------|
| 1    | 2023/12/12 | Biokin/Systlmmune | BMS         | BL-B01D1            | EGFR/HER3 | 800                                | 8,400                         |
| 2    | 2023/10/19 | Daiichi Sankyo    | Merck       | DS-7300a            | B7H3      | 1,500*                             | 7,500                         |
| 3    | 2023/10/19 | Daiichi Sankyo    | Merck       | U3-1402             | HER3      | 750*                               | 7,500                         |
| 4    | 2023/10/19 | Daiichi Sankyo    | Merck       | DS-6000             | CDH6      | 750*                               | 7,000                         |
| 5    | 2019/03/28 | Daiichi Sankyo    | AstraZeneca | DS-8201             | HER2      | 1,350                              | 6,900                         |
| 6    | 2020/07/27 | Dalichi Sankyo    | AstraZeneca | DS-1062a            | TROP2     | 1,000                              | 6,000                         |
| 7    | 2020/09/14 | Seagen            | Merck       | SGN-LIV1A           | LIV-1     | 600                                | 3,200                         |
| 8    | 2021/06/17 | Eisai**           | BMS         | MORAb-202           | FRα       | 650                                | 3,100                         |
| 9    | 2021/08/09 | Remegen           | Seagen      | RC48                | HER2      | 200                                | 2,600                         |
| 10   | 2017/02/10 | Immunomedics      | Seagen      | IMMU-132            | TROP2     | 250                                | 2,000                         |

Note: \*From the Daiichi Sankyo official website, not including payments due 12/24 months after contract execution.\*\*BMS has returned the rights to the FRa ADC introduced from Eisai.



CAGR

**US** 

China

RoW

Total



0.8

18.1

6.8

10.5

2025E

23.6

12.9

2026E

Global ADC market size

Source: China Insights Consultancy

2032E

2033E

2031E

#### Growth drivers and future trends in ADC development

2018-2024

45.7%

27 7%

34 2%

5.6

2021

40.0 =

2020

3.6 -0.0

2024-2033E

34.2%

56 9%

26.6%

32 3%

10.1

2023

4.9

2024

7.4 /2.7

2022

- Expand targets and indications, payloads with fewer side effects, and apply novel site-specific conjugation technology

#### Drivers and trends in ADC development

Drug modality

ADC drivers and trends

• Our conjugation technology supports both traditional non-specific and precise site specific approaches, providing enhanced flexibility in ADC development. Our proprietary site-specific conjugation yields ADCs with superior tumor-killing efficacy, minimal aggregation, high conjugation efficiency, and enhanced molecular and plasma stability, maintaining their binding affinity post-conjugation

#### Growth drivers & Future trends

2019

2018



Further expansion of targets and indications



Payloads with higher potency and lower side effects



Site-specific conjugation enhances drug stability



Cleavable linkers offer significant advantages

- From an indications perspective, approved ADC drugs currently cover hematologic malignancies and solid tumors, with solid tumors mainly
  including breast cancer, gastric cancer, and urothelial carcinoma. ADCs in Phase III clinical trials are expected to expand to new hematologic
  and solid tumor indications.
- From a target perspective, approved ADC drugs primarily focus on established targets like HER2, CD22, and Trop2. While global and Chinese
  ADC pipelines still concentrate on these established targets, emerging targets such as EGFRxHER3, MSLN and B7-H3are gradually appearing.

42.4

17.6

4.1

20.7

2028E

2029E

2030E

31.4

12.6 2.6

16.2

2027E

- From an antigen selection perspective, there is a shift from tumor cell surface antigens to tumor stroma antigens, tumor vasculature antigens, and driver oncogene proteins.
- Among the toxins currently in clinical use or already approved, microtubule inhibitors (exemplified by MMAE) are the most established. Representative drugs include Adcetris, Polivy, Padcev, Blenrep, Avidity, Tivdak, and Kadcyla. DNA topolsomerase I Inhibitors (exemplified by Dxd) represent the next generation of toxins with the most promising applications, as seen in drugs like Enhertu and Trodelvy.

  The toxicity and physicochemical properties of toxins directly impact the ADC's ability to kill target cells, thereby affecting efficacy. However, the
- The toxicity and physicochemical properties of toxins directly impact the ADC's ability to kill target cells, thereby affecting efficacy. However, the
  cytotoxic payloads can harm normal cells, leading to side effects such as myelosuppression, liver toxicity, and peripheral neuropathy, which
  necessitates careful antigen selection, optimized linker chemistry, and precise dosing strategies. New toxins need to have high cytotoxicity, low
  immunogenicity, high stability, small molecular weight, and functional groups for modification to achieve better therapeutic outcomes.
- Conjugation methods are divided into random conjugation and site-specific conjugation. Random conjugation, typically used in marketed ADC products, often yields heterogeneous products due to its poor selectivity in DAR distribution.
- Site-specific conjugation, a current research focus, offers potential for uniform DAR distribution, enhancing drug homogeneity and safety, thus widening the therapeutic window.
- Cleavable linkers, essential for bystander killing effects, are the mainstream in ADC linker development, enabling targeting of low antigen expression cells in heterogeneous turnors.
- Future linker designs aim to enhance hydrophilicity for reduced clearance rates and increase payload capacity for improved potency
- · Further, cleavable linkers may enhance the bystander effect due to their ability to release the cytotoxic drug into the surrounding environment

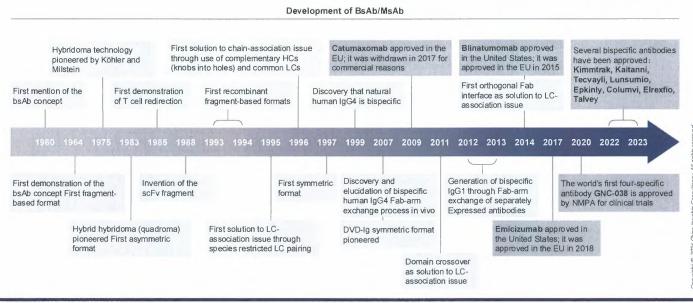
introduction

#### Introduction to Bispecific/Multispecific antibody (BsAb/MsAb)



Bispecific antibodies and multi-specific antibodies are novel types of antibodies that possess two or more specific antigen-binding sites Compared to monoclonal antibodies, BsAb/MsAb add additional antigen-binding sites, thereby increasing specificity, improving tumor cell targeting accuracy, and reducing off-target toxicity

The general structure of a bi/multi-specific drug involves carefully engineered components to ensure proper target recognition and engagement This structure often includes linkers or spacers to connect different binding domains while maintaining their functional integrity


| Classification          | Bispecific an                                                                                                                               | tibody drug (BsAb)                                                                                                                                                                                 | 2.4                                                                                                                                                                                                                                    |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification          | IgG-like with an Fc region                                                                                                                  | Non-lgG-like without an Fc region                                                                                                                                                                  | Multispecific antibody drug (MsAb)                                                                                                                                                                                                     |
| Representative platform | KiH; CrossMAb; Orthogonal Fab IgG; SEBA                                                                                                     | BiTE; Nanobody; DART                                                                                                                                                                               | GNC; Contorsbody; ProTECT; CODV-Ig                                                                                                                                                                                                     |
| Advantages              | CMC: Good solubility High stability Efficacy: Longer half-life Greater therapeutic potential through Fomediated ADCC, CDC, and ADCP effects | CMC:  Lower cost Higher yield  Efficacy:  Lack of Fc fragment, therapeutic effect solely through antigen binding, lower immunogenicity High penetration, great potential for solid tumor treatment | Synergistic effect of targeted immunotherapy<br>and escape inhibition     Simultaneous blockade/activation of two<br>distinct immune signaling pathways<br>downstream, enhances cell-killing toxicity     Reducing off-target toxicity |
| Disadvantages           | Poor permeability     Complex production     Higher immunogenicity                                                                          | Short half-life     Frequent dosing requirement     Poor patient compliance                                                                                                                        | Complex production     Higher cost     Lower yield                                                                                                                                                                                     |
| Representative<br>Drugs | Catumaxomab <sup>®</sup>                                                                                                                    | Blincyto®                                                                                                                                                                                          | No approved drugs currently                                                                                                                                                                                                            |



Source: Signal Transduction And Targeted Therapy; China Insights Consultancy

#### Development of BsAb/MsAb

BsAb/MsAb





#### CIC 灼识咨询

Source: China Insights Consultancy

#### Growth drivers and trends in BsAb/MsAb drugs development

- Rising prevalence of chronic diseases, ongoing advancements in antibody engineering&technology, and growing investments

Drug modality

BsAb/MsAb drivers

#### Drivers and trends in BsAb/MsAb drugs development

#### Growth drivers & Future trends



Rising prevalence of chronic



Ongoing advancements in antibody engineering&technology



Growing investments in research and development activities



Growing popularity of combination therapies

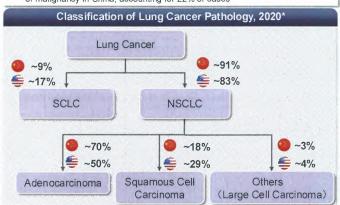
- The rising prevalence of chronic diseases, is fueling the demand for innovative treatment options like Bispecific/Multispecific antibodies. IARC's 2023
  report shows 20 million new cancer cases and 9.7 million deaths globally, with lung and breast cancer being most common. Lung cancer and female
  breast cancer are the most commonly occurring cancers worldwide, accounting respectively for 12.4% and 11.6% of total new cases in 2023.
- Cancer and autoimmune diseases pose significant challenges to patients and healthcare systems worldwide, underscoring the urgency for effective
  treatments. BsAb/MsAb offer a promising approach by simultaneously targeting two different antigens, thereby augmenting therapeutic efficacy. The
  expanding applications of BsAb/MsAb across different therapeutic areas contribute to the market's growth.
- Ongoing advancements in antibody engineering and technology have enabled the design and production of bispecific antibodies with improved efficacy
  and safety profiles. Novel technologies such as Fc engineering and antibody-drug conjugates are enhancing the therapeutic potential of BsAb/MsAb.
- Recent years have witnessed remarkable progress in developing novel antibody formats and engineering techniques, revolutionizing the generation of BsAb/MsAb. These advancements leverage recombinant DNA technology and protein engineering to construct bispecific antibodies with superior pharmacokinetics, reduced immunogenicity, and enhanced tumor penetration.
- Growing investments in research and development activities by pharmaceutical and biotechnology companies are driving the development of BsAb/MsAb.
   These investments aim to explore new therapeutic targets and enhance the efficacy of existing treatments.
- Collaborations and partnerships between pharmaceutical companies, biotechnology firms, and academic institutions are driving the development and
  commercialization of bispecific antibodies. These collaborations leverage complementary expertise and resources to accelerate drug discovery and
  development processes.
- The growing popularity of combination therapies, wherein BsAb/MsAb are used alongside other immunotherapies or conventional treatments, presents
  synergistic opportunities to enhance treatment efficacy. By leveraging the complementary mechanisms of action of different therapeutic modalities,
  combination therapies have the potential to improve patient responses and outcomes.
- As the understanding of immune system function and dysregulation continues to evolve, BsAb/MsAb stand at the forefront of therapeutic innovation, offering novel strategies for addressing unmet medical needs and improving patient care globally.

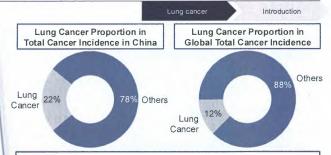
#### Table of contents

- 1. Overview of global and China pharmaceutical market
- 2. Overview of global and China cancer drug market
- 3. Comparison of different drug modalities

#### 4. Overview of global and China lung cancer drug market

- 5. Overview of global and China breast cancer drug market
- 6. Overview of esophageal cancer drug market
- 7. Overview of nasopharynx cancer drug market
- 8. Overview of HNSCC drug market
- 9. Overview of GC&CRC drug market
- 10. Overview of cervical cancer drug market
- 11. Overview of urothelial carcinoma drug market
- 12. Overview of glioma drug market
- 13. Overview of blood tumor market
- 14. Others





40



#### Epidemiology of lung cancer

- Lung cancer occurs when there is genetic damage to the DNA of cells in the airways
- Primary Bronchogenic Carcinoma: Commonly known as lung cancer, is a
  malignant tumor originating from the bronchial mucosa or glands. It is one of
  the most prevalent and deadly malignancies in China and worldwide
- Ranking: In 2022, lung cancer ranked first among all newly diagnosed cases of malignancy in China, accounting for 22% of cases





#### **Etiological Factor**

- Smoking: >80% of lung cancer cases in the Western world attributable to cigarette smoking
- Age: Incidence and death rates rise significantly after 45;  $\sim\!53\%$  of cases occur in 55–74 years old in the US
- Occupational Exposure: Accounts for 5–10% of global lung cancer cases, such as asbestos, arsenic, and chromium
- Air Pollution: The combustion of fossil fuels, and particular matter suspended in the air
- Chronic Obstructive Pulmonary Disease (COPD): Primarily occurs due to smoking

Copyright © 2024 China Insights Consultancy. All rights reserved

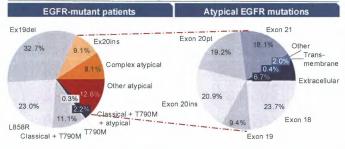


CIC 灼识咨询

Source: China Insights Consultancy

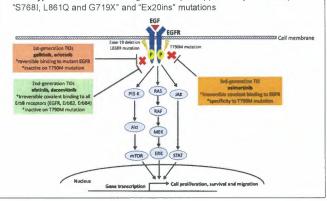
У

#### Global Market size of non-small-cell lung cancer drugs, 2018-2033E


Updated 2024 base year



#### EGFR mutations typically occur in exons 18-21 in NSCLC


- Epidermal growth factor receptor (EGFR) pathway is a well-studied oncogenic pathway in human NSCLC
- $\cdot$  ~67% had classical EGFR mutations (L858R and/or Ex19del  $\pm$  T790M)
- ~31% had atypical EGFR mutations, including Ex20ins (~9%), atypical mutations (~13%), or a complex mutation including an atypical mutation (~9%)
  - > Atypical EGFR mutations occurred primarily in exons 18 (~24%) and 20 (~21% insertions and ~19% point mutations)
- ~2% had a classical mutation with T790M and an atypical mutation

#### Percentage of NSCLC Containing Classical and Atypical EGFR Mutations



#### **Limited Targeted Therapy**

- Treatment approaches vary based on different subtypes of EGFR mutations
- For classical (L858R or Ex19del) mutations: mainly targeted therapies
  - > 1st-, 2nd- or 3rd-Tyrosine kinase inhibitors (TKIs) show marked improvements in clinical outcomes
- For atypical mutations: No targeted therapies approved by FDA except





Source: Int. J. Mol. Sci., Nature Portfolio, CIC

#### CSCO 2024: Limited efficacy of chemotherapy and immunotherapy for driver gene-negative cases

CSCO treatment

Copyright © 2024 Chine Insights Consultency. All rights rese

· Operable: Surgical resection + Mediastinal lymph node dissection

|                                           | GENE                                                                      |   | FIRST-LINE THERAPY (G                                                                                      | RADE I)                                    | SUBSEQUENT THERAPY (GRADE I)                                                                                             |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                    |
|-------------------------------------------|---------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| N. A. | Gene-Negative<br>Squamous NSCLC<br>Gene-negative<br>Non-squamous<br>NSCLC |   | PS=0-1: Platinum-based chemotherapy ± monotherapy/Combination chemotherapy PS=2: Single-agent chemotherapy | Beva/PD-(L)1                               |                                                                                                                          | PS=0~2:Nivolumab/Tislelizu<br>for Non-squamous NSCLC).<br>PS=3~4: Best supportive ca | /Docetaxel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pembrolizumab/Atezorizumab (GRADE II)     Only for Squamous: Gemcitabine, Afatinib |
|                                           | EGFR ("dassical")                                                         | • | Osimertinib, Almonertinib, Furmonertinib, A<br>Erlotinib, Gefitinib, Befotertinib                          | fatinib, Dacomitinib,                      |                                                                                                                          | Initial TKI + local therapy (O<br>TKI if T790M positive/Platin                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                    |
|                                           | EGFR ("ex20ins")                                                          |   | Gene-negative first-line therapy (GRADE I,                                                                 | II)                                        | ٠                                                                                                                        | Sunvozertinib                                                                        | • Gene-negative ≥2L therap<br>(GRADE II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |
| itage<br>IV                               | ALK                                                                       | • | Alectinib, Brigatinib, Lorlatinib, Ensartinib, C<br>Iruplinalib                                            | Ceritinib, Crizotinib,                     |                                                                                                                          | Initial TKI (or others) ± loca<br>TKI if effective (only for ALK                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                    |
| ISCLC                                     | ROS1                                                                      |   | Entrectinib, Crizotinib                                                                                    |                                            |                                                                                                                          | (Extensive stage)                                                                    | y riaman baoca onomo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | morapy = bota                                                                      |
|                                           | BRAF V600E                                                                |   | Dabrafenib + Trametinib Gene-                                                                              | negative first-line therapy                | Gene-positive ≥2L therapy (1L targeted therapy)     Targeted therapy/Gene-negative ≥2L therapy (1L non-targeted therapy) |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                    |
|                                           | NTRK                                                                      |   | Larotrectinib, Entrectinib (GRAD                                                                           | DE II)                                     |                                                                                                                          |                                                                                      | -targeted therapy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |
|                                           | METex14                                                                   |   | Glumetinib, Vebreltinib, Tepotinib                                                                         |                                            | :                                                                                                                        | Savolitinib, Glumetinib,<br>Vebreltinib, Tepotinib                                   | Gene-negative/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/positive/po | ve ≥ 2L therapy (GRADE                                                             |
|                                           | RET                                                                       |   |                                                                                                            | negative first-line therapy<br>DE II, III) |                                                                                                                          | Selpercatinib; Pralsetinib                                                           | 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |
|                                           | KRAS G12C                                                                 |   |                                                                                                            |                                            |                                                                                                                          |                                                                                      | Sotorasib; Adagrasib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (GRADE II)                                                                         |
|                                           | HER-2                                                                     |   | Gene-negative first-line therapy (GRADE I,                                                                 | GRADE I, II, III)                          |                                                                                                                          | Gene-negative 2L therapy                                                             | Trastuzumab Deruxtecan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    |

Stage IIIA NSCLC

- Operable: Surgical exploration & resection + mediastinal lymph node dissection or systematic lymph node sampling
- Inoperable: Definitive RT, preferably stereotactic ablative radiotherapy
- Definitive concurrent chemoradiation
- Stereotactic radiosurgery (SRS) alone or
- Durvalumab · Systemic Therapy

|              |                       | - | surgical resection                                                                                                                         |   |                                                                                                                      |                               |  |
|--------------|-----------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
|              | GENE                  | L | FIRST-LINE THERAPY                                                                                                                         |   | SUBSEQUENT THERAPY                                                                                                   |                               |  |
|              | PD-L1 ≥1%             |   | PS 0-2: Biomarker-directed therapy • PS 3-4; Supportive care                                                                               |   | Continuation maintenance                                                                                             |                               |  |
|              | PD-L1 <1%             |   | Systemic Therapy • PS 3-4: Supportive care                                                                                                 | ٠ | Maintenance therapy                                                                                                  |                               |  |
|              | EGFR<br>("classical") |   | Osimertinib; Osimertinib + pemetrexed (nonsquamous)                                                                                        |   | Continue Osimertinib; Local therapy for limited lesions<br>Amivantamab-vmjw + carboplatin + pemetrexed (nonsquamous) |                               |  |
|              | EGFR<br>("atypical")  |   | S768I, L861Q, and/or G719X: Osimertinib, Afatinib; Erlotinib, Gefitinib, Dacomitinib Exon 20ins: Amivantamab-vmjw + carboplatin/pemetrexed |   | Systemic Therapy (Subsequent)                                                                                        | Systemic Therapy (Subsequent) |  |
| Stage        | KRAS G12C             |   | Systemic Therapy                                                                                                                           |   | Sotorasib; Adagrasib                                                                                                 |                               |  |
| IVB<br>ISCLC | ALK                   | : | Alectinib, Brigatinib, Lorlatinib Ceritinib; Crizotinib                                                                                    | • | Continue alectinib or brigatinib or ceritinib or lorlatinib<br>Local therapy for limited lesions                     |                               |  |
|              | ROS1                  |   | Entrectinib, Crizotinib, Repotrectinib Ceritinib                                                                                           |   | Local therapy for limited lesions<br>Continue entrectinib, crizotinib, repotrectinib, or ceritinib; loriatinib       |                               |  |
|              | ERBB2(HER2)           |   | Systemic Therapy                                                                                                                           |   | Fam-trastuzumab, deruxtecan-nxki; Ado-trastuzumab emtansine                                                          |                               |  |
| . 40         | BRAF V600E            |   | Dabrafenib + Trametinib; Encorafenib + Binimetinib<br>Vemurafenib or Dabrafenib                                                            |   |                                                                                                                      |                               |  |
|              | NTRK1/2/3             |   | Larotrectinib or Entrectinib                                                                                                               |   | Systemic Therapy (Subsequent/Progression)                                                                            |                               |  |
|              | METex14               |   | Capmatinib or Tepotinib; Crizotinib                                                                                                        |   |                                                                                                                      |                               |  |
|              | RET                   |   | Selpercatinib or Pralsetinib; Cabozantinib                                                                                                 |   |                                                                                                                      |                               |  |
|              |                       |   |                                                                                                                                            |   |                                                                                                                      |                               |  |



Source: NCCN 2024; CIC

NCCN treatment pathway

Copyright © 2024 Chine Insights Consultancy. All rights

#### NCCN version 5.2024

SYSTEMIC THERAPY FOR ADVANCED OR METASTATIC DISEASE

#### SQUAMOUS CELL CARCINOMA (PS 0-1)

- Pembrolizumab/carboplatin/pemetrexed
- · Pembrolizumab/cisplatin/pemetrexed
- · Cemiplimab-rwlc/pemetrexed/(carboplatin or cisplatin)

#### Other Recommended

- Atezolizumab/carboplatin/paclitaxel/bevacizumabe
- · Atezolizumab/carboplatin/albumin-bound paclitaxel
- · Nivolumab/ipilimumab
- · Nivolumab/ipilimumab/pemetrexed/(carboplatin or cisplatin)
- · Cemiplimab-rwlc/paclitaxel/(carboptatin or cisplatin)
- Tremelimumab-actl/durvalumab/carboplatin/albumin-bound paclitaxel
- Tremelimumab-acti/durvalumab/(carboplatin or cisplatin)/pemetrexed

#### ADENOCARCINOMA (PS 2)

ADENOCARCINOMA (PS 0-1)

#### Preferred

Carboplatin/pemetrexed

#### Other Recommended

· Carboplatin/albumin-bound paclitaxel; Carboplatin/docetaxel; Carboplatin/etoposide; Carboplatin/gemcitabine; Carboplatin/paclitaxel

#### ADENOCARCINOMA (PS 3-4)

# Preferred

- · Pembrolizumab/carboplatin/paclitaxel
- Pembrolizumab/carboplatin/albumin-bound paclitaxel
- Cemiplimab-rwlc/paclitaxel/(carboplatin or cisplatin)

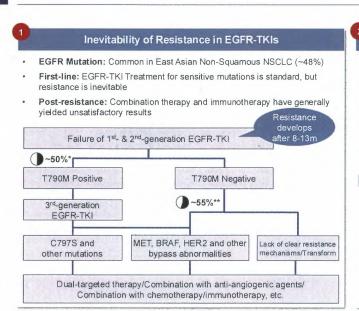
#### Other Recommended

- Nivolumab/ipilimumab
- Nivolumab/ipilimumab/paclitaxel/carboplatin
- · Tremelimumab-acti/durvalumab/carboplatin/albumin-bound paclitaxel
- Tremelimumab-acti/durvalumab/(carboplatin or cisplatin)/gemcitabine

#### SQUAMOUS CELL CARCINOMA (PS 2)

#### Preferred

- Carboplatin/albumin-bound paclitaxel
- Carboplatin/gemcitabine
- Carboplatin/paclitaxel


#### Other Recommended Carboplatin/docetaxel

- · Carboplatin/etoposide

SQUAMOUS CELL CARCINOMA (PS 3-4)

Best supportive care

#### Unmet clinical needs in advanced NSCLC: limited efficacy and resistance to first-Line TKI therapy



Targeted Drugs for Gene Abnormalities Need to Improve in Variety and Efficacy

- EGFR Mutations & ALK Rearrangement: 3rd TKIs have shown superior efficacy in NSCLC patients with specific driver genes
- ROS1 Rearrangement: Highly homologous with ALK kinase domain; ALKpositive drugs also effective
- METex14 Skipping, RET Rearrangement, BRAF V600E Mutation: Only 1-2 drugs approved domestically, still room for improvement in ORR
- KRAS mutation: No drugs available domestically, market remains empty
- Lack of Driver Gene Mutations: first-line treatments mainly consist of PD-1/PD-L1 inhibitors, combination chemotherapy, etc

| Genotype               | Drug                       | Trial Name  | Line | ORR | mPFS  |
|------------------------|----------------------------|-------------|------|-----|-------|
| EGFR<br>(19DEl, L858R) | Osimertinib                | FLAURA      |      | 71% | 10.1m |
| ALK                    | Alectinib                  | ALEX        |      | 51% | 10.9m |
| ROS1                   | Lorlatinib                 | NCT01970865 |      | 35% | 8.5m  |
| METex14                | Savolitinib                | NCT02897479 | ≥2L  | 48% | 6.8m  |
| RET                    | Pralsetinib                | ARROW       |      | 61% | 17.1m |
| BRAF V600E             | Dabrafenib +<br>Trametinib | BRF113928   |      | 69% | 10.2m |

Notes: \*: represents the proportion of patients developing the T790M mutation after acquiring resistance to TKIs; \*\*: represents the proportion of patients who are T790M-negative after developing resistance to TKIs but



Source: Advances in Clinical Medicine; YXJ; European Journal of Medicinal Chemistry; Clinical Trials; CIC 48

#### NSCLC - ADC pipelines evaluated in both China and the U.S., with the most advanced stage in Phase III

#### Pipelines of stage III ADCs for NSCLC

| Target      | Candidates  | Company                       | Highest stage <sup>1</sup> | Trial number <sup>2</sup>       | Indication <sup>2</sup>                  | First posted date <sup>2</sup> | Location <sup>2</sup>      |
|-------------|-------------|-------------------------------|----------------------------|---------------------------------|------------------------------------------|--------------------------------|----------------------------|
|             |             |                               |                            | <ul> <li>NCT06382129</li> </ul> | EGFRwt NSCLC                             | • 2024-04-24                   | · China                    |
| HER3×EGFR   | iza-bren    | B. 11                         | III                        | <ul> <li>NCT06382116</li> </ul> | <ul> <li>EGFRmut a/m nsqNSCLC</li> </ul> | • 2024-04-24                   | <ul> <li>China</li> </ul>  |
| IERS A EGFR | iza-bren    | Biokin                        | 111                        | <ul> <li>NCT06838273</li> </ul> | <ul> <li>EGFRmut a/m NSCLC</li> </ul>    | · 2025-02-20                   | <ul> <li>China</li> </ul>  |
|             |             |                               |                            | · NCT07100080                   | <ul> <li>EGFRmut a/m nsqNSCLC</li> </ul> | • 2025-08-03                   | <ul> <li>Global</li> </ul> |
| HER3        | CUD A2000   | Hann D. J.                    | 111                        | · NCT06671379                   | EGFRmut a/m nsqNSCLC                     | • 2024-11-04                   | Obina                      |
| HEK3        | SHR-A2009   | HengRui                       | III                        | <ul> <li>NCT07183189</li> </ul> | <ul> <li>EGFRmut a/m/rNSCLC</li> </ul>   | • 2025-09-19                   | China                      |
| EGFR        | CPO301      | CSPC                          | 111                        | <ul> <li>NCT06927986</li> </ul> | EGFRmut a/mNSCLC                         | • 2025-04-15                   | China                      |
|             | Dato-DXd*   | Daiichi<br>Sankyo/AstraZeneca | Ш                          | · NCT05215340                   | • a/m nsqNSCLC                           | - 2022-01-31                   | Global                     |
| TROP2       | Trodelvy*   | Merck/Gilead                  |                            | · NCT05089734                   | a/mNSCLC                                 | • 2021-10-22                   | Global                     |
|             |             |                               | III                        | <ul> <li>NCT05609968</li> </ul> | mNSCLC                                   | • 2022-11-08                   | <ul> <li>Global</li> </ul> |
|             | SKB264*     | Merck/Kelun                   | TB                         | <ul> <li>NCT06170788</li> </ul> | • mNSCLC                                 | • 2023-12-14                   | Global                     |
|             | Eshadus     | Daiichi                       | m                          | · NCT05048797                   | HER2mut a/m nsqNSCLC                     | • 2021-09-17                   | <ul> <li>Global</li> </ul> |
| HER2 -      | Enhertu*    | Sankyo/AstraZeneca            | HI                         | · NCT06899126                   | <ul> <li>HER2-OE a/m nsqNSCLC</li> </ul> | · 2025-03-27                   | <ul> <li>Global</li> </ul> |
| HERZ        | SHR-A1811*  | HengRui                       | III                        | <ul> <li>NCT06430437</li> </ul> | HER2mut a/mNSCLC                         | • 2024-05-28                   | China                      |
|             | BL-M07D1    | Biokin                        | 10                         | <ul> <li>NCT07178795</li> </ul> | HER2mut a/m nsqNSCLC                     | • 2025-09-17                   | China                      |
| ITGB6       | CON BEA     | C                             | 111                        | <ul> <li>NCT06012435</li> </ul> | a/m nsqNSCLC                             | · 2023-08-25                   | <ul> <li>Global</li> </ul> |
| IIGBb       | SGN-B6A     | Seagen                        | 111                        | · NCT06758401                   | a/m NSCLC                                | · 2025-01-03                   | <ul> <li>Global</li> </ul> |
| PD-L1       | PF-08046054 | Pfizer                        | 111                        | <ul> <li>NCT07144280</li> </ul> | a/m NSCLC                                | • 2025-08-27                   | Global                     |

almir NSCLC: advanced/metastatic/recurrent non-small cell lung cancer, nsqNSCLC: non-squamous non-small cell lung cancer
\*Represent marketed drugs which are being explored for indication expansion
Note: 1 The highest stage refers to the highest clinical stage of candidates in China and the United States; 2 Represent the trial
Represent the corresponding indication of the trial numbers. 3 Abovie has withdrawn this phase III trial of ABBV-399 to treat orr , first posted dates and locations of the Phase III clinical trials evaluating corresponding drug. 3 SCLC as of October 2024.

CIC 灼识咨询

Source: Clinical trials.gov; CDE; China Insights Consultancy

#### Introduction of EGFR and HER3 pathway

# The pathway of EGFR and HER3 Dimerization Dimerization П **EGFR** HER3 EGFR Tumor cell proliferation, growth and migration

The binding site residue diagrams



- > The epidermal growth factor receptor (EGFR) signaling pathway and the receptor tyrosine-protein kinase erbB-3 (HER3) are both the most important pathways that regulate growth, survival, proliferation, and differentiation in
- Two primary downstream signaling pathways of EGFR are the PI3K/Akt/PTEN/mTOR and the RAS/RAF/MEK/ERK pathways. HER3 has been selected as a target protein along with EGFR for treating cancers because of it lacks intrinsic tyrosine kinase activity and frequently co-expresses and forms heterodimers with other receptor tyrosine kinases (RTKs) to activate oncogenic signaling in cancer cells, and it has ability to activate PI3/AKT pathway responsible for therapy failure. Studies have shown that EGFR-specific therapy in combination with HER3 therapy can enhance anti-tumor effects and overcome treatment resistance



Source: Nature: China Insights Consultancy

Copyright © 2024 China Insights Consultancy. All rights reserved

#### Trop-2 is a member of GA733 protein family playing a role in activating the MAPK/PI3K/AKT pathways which lead to growth, proliferation and metastasis in epithelial cancers

Introduction



The transmembrane glycoprotein Trophoblast Cell Surface Antigen-2 (Trop-2), which is a member of a GA733 protein family that includes Trop-2 and EpCAM (epithelial cell adhesion molecule), exhibits widespread expression in numerous epithelial cancers, as well as in certain normal tissues.

# Signalling Pathways and biological functions of Trop-2

Trop-2 has been documented to engage in interactions with multiple proteins, including insulinlike growth factor-1 (IGF-1), claudin-1 and 7, cyclin D1, and PKC. Moreover, Trop-2's involvement in calcium signaling also suggests a potential mechanism for activating the MAPK pathway.



Trop-2's works as a regulator of stem cell growth, potentially involving in the regeneration of diverse tissues and perhaps contributing to physiological events such as hyperplasia.



On the other hand, overexpression of Trop-2 has been linked to increased tumor growth, proliferation, and metastasis in numerous epithelial cancers, including those affecting the head and neck, thyroid, lung, gastrointestinal tract, breast, renal, gynecological regions, and glioma.

# Patients diagnosed with BLCA exhibited the highest expression level of the TROP2 gene; BL-M02D1 attains a high DAR and has launched clinical trails on NSCLC, TNBC and digestive tract tumors

The expression levels of TROP2 in cancers

The absolute expression levels of TROP2 and overexpression levels of TROP2 compared to normal tissues are high in Bladder Urothelial Carcinoma (BLCA), Cholangiocarcinoma (CHOL), Esophageal carcinoma (ESCA), Uterine Corpus Endometrial Carcinoma (UCEC),

The new compound Ed-04, derived from the alkaloid camptothecin, induces cell cycle arrest at the S phase, leading to subsequent apoptosis.

Wt Fc IgG1

Wt Fc IgG1

The new compound Ed-04, derived from the alkaloid camptothecin, induces cell cycle arrest at the S phase, leading to subsequent apoptosis.

BL-M02D1 attains a high drug-to-antibody ratio (DAR=8) utilizing a remarkably stable linker.

Types of locally advanced or metastatic tumors

Phase I Phase I/II Phase III

NSCLC | Ib/II, 07/10/23 |

COLO, GC, HCC, CHOL, GBC, PAAD | I, 05/19/22 |

TNBC | I, 04/26/22 |

CIC 灼识咨询

52

Copyright © 2024 Chine Insights Cons

#### Introduction and mechanism of HER2

and Thyroid carcinoma (THCA).

BL-M07D1


Introduction

Introduction

#### Introduction of HER2

> Human epidermal growth factor receptor 2 (HER2) is a member of the human epidermal growth factor receptor family. HER2 is a transmembrane receptor tyrosine kinase and a member of the ErbB family, which also includes HER1 (EGFR), HER3, and HER4. Unlike the other three members, HER2 does not bind to EGF-like ligands but relies on forming heterodimers with other members to activate signaling pathways that regulate cell proliferation and survival. HER2 is overexpressed in various cancers such as BC, GC, lung cancer, ovarian cancer (OC), among others

> In recent years the HER2 has become an important biomarker and anti-HER2 treatments are expected to be standard therapy for those cancers with HER2 over-expression



#### Mechanism of action of HER2 signal pathway

- HER stands for Human Epidermal Growth Factor Receptor, also known as ERBB. The HER family comprises four members: EGFR (HER1 or ERBB1), HER2 (ERBB2), HER3 (ERBB3), and HER4 (ERBB4).
- Human Epidermal Growth Factor Receptor 2 (HER2) is a tyrosine kinase on chromosome 17 (17q21). It contains three recognizable functional domains: an extracellular domain that binds to members of the HER2 family, a hydrophobic transmembrane domain, and an intracellular domain with tyrosine kinase activity.
- Upon activation, HER2 triggers the phosphorylation of intracellular tyrosine substrates, initiating signaling pathways that have oncogenic implications. HER2 does not rely on extracellular ligands for activation and can form heterodimers with any of the other three receptors (HER1, HER3, HER4), making it an ideal dimer partner. After activation, HER2 triggers the phosphorylation of intracellular tyrosine substrates, initiating subsequent signaling pathways. Activating PI3K/AKT/mTOR/NFK-β and the RAS/RAF/MEK/MAPK signaling pathway promotes cell proliferation, metastasis, angiogenesis, and survival while inhibiting cell apoptosis.

#### Unmet needs of approved HER2 ADC products

#### Unmet needs of approved products



Most of the currently approved HER2 ADC drugs are targeted at patients with HER2 positive or high expression, and there are limited treatment options for patients with HER2 negative or low expression. The biggest demand in the breast cancer market does not come from HER2-positive patients, but from the patient group with low HER2 expression.



The indications of currently marketed products in China mainly focus on breast cancer, gastric cancer and urothelial cancer, and gastric cancer and urothelial cancer are both targeted at patients with HER2-positive or high expression. However, solid tumors have a wide range of indications. For example, cancer types with many patients, such as lung cancer, liver cancer, and biliary tract cancer, have not yet been approved. Therefore, the coverage of indications for marketed products is relatively limited, the market need is expected to be filled.



The increasing number of cancer incidence is positively correlated with aging population in China. The number of cancer patients is projected to increase with the aging population continuously growing. At the same time, solid tumor patients account for major proportion of all cancers. There are lots of patients who cannot get properly diagnosed or have targeted treatment.



Surgery is the first choice to get cured for solid tumors. But for advanced, metastatic and refractory solid tumors, which are most of the cases, there still lack efficacious therapies for 3rd and beyond line patients. Besides, current therapies for solid tumors can cause various side effects, such as diarrhea, constipation, weight loss, etc., being less-tolerated for late-line patients.



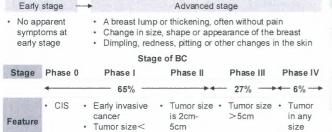
Source: CDE; China Insights Consultancy

#### Table of contents

- Overview of global and China pharmaceutical market
- Overview of global and China cancer drug market
- Comparison of different drug modalities
- 4 Overview of global and China lung cancer drug market

#### 5. Overview of global and China breast cancer drug market

- Overview of esophageal cancer drug market
- Overview of nasopharynx cancer drug market
- Overview of HNSCC drug market
- Overview of GC&CRC drug market
- Overview of cervical cancer drug market
- Overview of urothelial carcinoma drug market
- Overview of glioma drug market
- Overview of blood tumor market






- Breast cancer (BC) is a disease that abnormal breast cells grow out of control and form tumors, which the most-commonly diagnosed malignant tumor in women in the world, as well as the first cause of death from malignant tumors.
- In 2022, breast cancer caused 670 000 deaths globally. BC is the second most common type of cancer globally and the most prevalent cancer in the U.S.
- Like many other cancers, causes of breast cancer can vary, but genetic predisposition (BRCA1 or BRCA2 mutations), estrogen and progesterone exposure and lifestyle factors and a few factors that have attributed to the heightened risk of breast cancer.

# The incidence of BC, 2022 HR+/HER2HER2+ HR-/HER22.309 1.732 362 231 346 Global Five-year survival rate of BC, 2022 Five-year survival rate of BC, 2022 90% 71% 29% Phase I Phase II Phase III Phase IV

#### Symptoms



Classification of BC\* HR+/HER2-HER2+ TNBC Tumor have ER or PR Tumor have HER2. Tumor tested negative which can promote the growth of HR+ tumors, which has been shown for ER, PR and HER2 to be associated with but without HER2 aggressive BC More aggressive and · Aggressiveness, early Low grade, slow growing, fast-growing than relapse, present in best prognosis, higher HR+/HER2 type advanced stages

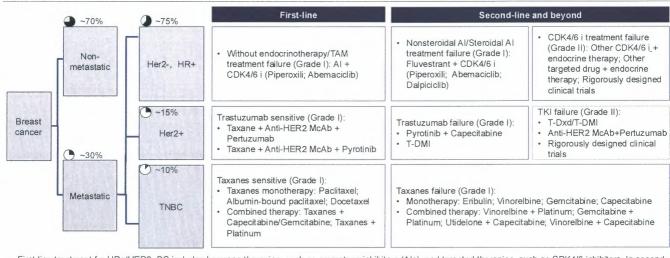
Treatments for breast cancer, therefore, will depend on immunohistochemistry
and will include surgery if at an early stage and chemotherapy, hormonal
therapy and immunotherapies based on various factors.

Note: \*ER: estrogen receptor; PR: progesterone receptor; HER2: human epidermal growth factor receptor 2

2cm



Source: China Insights Consultancy

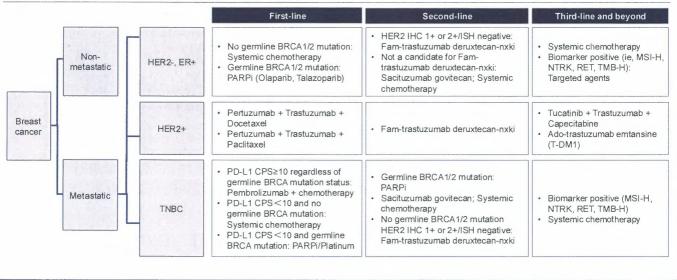

-5

#### Treatment path for breast cancer

Breast cance

Treatment pathway

#### Treatment path for breast cancer (CSCO)




• First-line treatment for HR+/HER2- BC includes hormone therapies, such as aromatase inhibitors (AIs), and targeted therapies, such as CDK4/6 inhibitors. In second-line settings, primary treatment options include fullvestrant coupled with CDK4/6 inhibitors

Breast cance

Treatment pathway

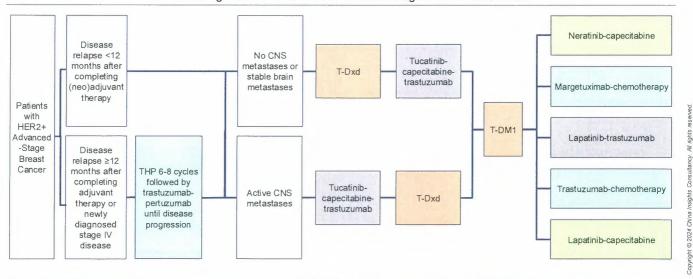
#### Treatment path for breast cancer (NCCN)





Source: NCCN; China Insights Consultancy

y


Copyright © 2024 China Insights Consultancy. All rights rase

#### Treatment algorithm for HER2+ breast cancer

Breast cancer

Treatment pathway

#### Treatment Algorithm for Patients with Advanced-Stage HER2+ Breast Cancer





#### Global breast cancer drugs market size, 2018-2033E



CIC 约识咨询

Source: China Insights Consultancy

#### Market opportunity in Breast Cancer

#### Market opportunity in Breast Cancer

#### There remain significant unmet clinical needs of breast cancer treatment:

#### Recurrence/metastatic diseases for HR+/HER2- patients

 For HR+/HER2- patients, recurrence and metastasis pose major challenges despite initial treatment efficacy. Existing therapies have limited effectiveness in managing these recurrent or metastatic cases, necessitating innovative treatments to delay disease progression and improve survival rates

#### Addressing drug resistance in breast cancer therapy

Drug resistance is a significant hurdle in breast cancer treatment, as patients
often develop resistance to therapies over time, reducing or negating their
efficacy. Overcoming and managing this resistance is a crucial area of
research, requiring the development of drugs that can bypass resistance
mechanisms or re-sensitize tumors to existing treatments

#### Limited treatment options in the late-stage setting

 Late-stage breast cancer patients face a scarcity of treatment options, particularly after standard therapies fail. The development of new therapies has not kept pace with the demand, highlighting the urgent need for effective treatments that can extend the lives of late-stage patients and enhance their quality of life

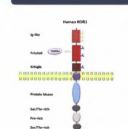
#### Limited treatment options for TNBC patients

 TNBC lacks hormone receptors and HER2 expression, making conventional hormone therapy and HER2-targeted treatments ineffective. Patients with TNBC often rely on chemotherapy, which has limited efficacy and poor prognosis. There is an urgent need for effective treatment options specifically for TNBC to improve survival rates and quality of life for this patient group

#### Pipelines of stage III ADCs for breast cancer

| Target    | Candidates                              | Company                                          | Highest stage <sup>1</sup> | Trial number <sup>2</sup>       | Indication <sup>2</sup>               | First posted date <sup>2</sup> | Location <sup>2</sup>      |
|-----------|-----------------------------------------|--------------------------------------------------|----------------------------|---------------------------------|---------------------------------------|--------------------------------|----------------------------|
| HER3×EGFR | iza-bren                                | Biokin                                           | III                        | <ul> <li>NCT06382142</li> </ul> | a/mTNBC                               | · 2024-04-24                   | China                      |
|           |                                         |                                                  |                            | <ul> <li>NCT06343948</li> </ul> | <ul> <li>HER2-/HR+ a/m/rBC</li> </ul> | · 2024-04-03                   | China                      |
|           |                                         |                                                  |                            | <ul> <li>NCT06926868</li> </ul> | a/m/rTNBC                             | • 2025-04-15                   | Global                     |
| HER3      | HER3-DXd                                | Daiichi Sankyo/Merck                             |                            | <ul> <li>NCT07060807</li> </ul> | HER2-/HR+ a/mBC                       | • 2025-07-11                   | Global                     |
| TROP2     | FDA018                                  | Shanghai Fudan-Zhangjiang Bio-<br>Pharmaceutical | III                        | - NCT06519370                   | • a/m/rTNBC                           | · 2024-07-25                   | China                      |
|           | ESG401                                  | Shanghai Escugen Biotechnology                   | III                        | <ul> <li>NCT06383767</li> </ul> | <ul> <li>HER2-/HR+ a/m/rBC</li> </ul> | · 2024-04-25                   | <ul> <li>China</li> </ul>  |
|           |                                         |                                                  |                            | <ul> <li>NCT06732323</li> </ul> | · m/rTNBC                             | • 2024-12-13                   | China                      |
|           | SKB264*                                 | Merck Sharp & Dohme/<br>Klus Pharma              | BI                         | <ul> <li>NCT06081959</li> </ul> | <ul> <li>HER2-/HR+ a/m/rBC</li> </ul> | · 2023-10-13                   | China                      |
|           |                                         |                                                  |                            | <ul> <li>NCT06393374</li> </ul> | earlyTNBC                             | · 2024-05-01                   | Global                     |
|           | Troldevy*                               | Gilead Sciences                                  | III                        | <ul> <li>NCT04595565</li> </ul> | <ul> <li>earlyTNBC</li> </ul>         | · 2020-10-20                   | <ul> <li>Global</li> </ul> |
|           |                                         |                                                  |                            | <ul> <li>NCT05382299</li> </ul> | a/mTNBC                               | · 2022-05-19                   | Global                     |
|           | Dato-DXd* AstraZ                        | AstraZeneca                                      | 201                        | <ul> <li>NCT05374512</li> </ul> | <ul> <li>r/mTNBC</li> </ul>           | · 2022-05-16                   | <ul> <li>Global</li> </ul> |
|           |                                         | Astrazerieca                                     | Ш                          | <ul> <li>NCT05629585</li> </ul> | earlyTNBC                             | · 2022-11-29                   | Global                     |
| HER2      | Enhertu* AstraZeneca/<br>Daiichi Sankyo |                                                  | 111                        | <ul> <li>NCT04784715</li> </ul> | HER2+ mBC                             | · 2021-03-05                   | Global                     |
|           |                                         |                                                  |                            | <ul> <li>NCT05113251</li> </ul> | <ul> <li>HER2+ earlyBC</li> </ul>     | · 2021-11-09                   | <ul> <li>Global</li> </ul> |
|           |                                         | Dalichi Sankyo                                   |                            | <ul> <li>NCT05950945</li> </ul> | · mTNBC                               | • 2023-07-18                   | Global                     |
|           | A166                                    | Klus Pharma                                      | III                        | <ul> <li>NCT06968585</li> </ul> | HER2+ a/mBC                           | • 2023-06-15                   | China                      |
|           | DB-1303 Dualit                          | Duality Ric                                      | ) III                      | <ul> <li>NCT06265428</li> </ul> | <ul> <li>HER2+ mBC</li> </ul>         | · 2024-02-20                   | <ul> <li>China</li> </ul>  |
|           |                                         | Duality Bio                                      |                            | <ul> <li>NCT06018337</li> </ul> | HR+/HER2- a/mBC                       | · 2023-08-30                   | Global                     |
|           | SHR-A1811*                              | HengRui                                          |                            | <ul> <li>NCT05424835</li> </ul> | HER2+ BC                              | · 2022-06-21                   | China                      |
|           |                                         |                                                  |                            | <ul> <li>NCT05814354</li> </ul> | <ul> <li>HER2-low m/rBC</li> </ul>    | · 2023-04-14                   | <ul> <li>China</li> </ul>  |
|           |                                         |                                                  |                            | <ul> <li>NCT07111832</li> </ul> | · m/rTNBC                             | · 2025-08-08                   | China                      |
|           |                                         | Chia Tai Tianqing                                | III                        | <ul> <li>NCT06561607</li> </ul> | <ul> <li>HER2-low m/rBC</li> </ul>    | · 2024-08-20                   | China                      |
|           |                                         |                                                  |                            | <ul> <li>NCT07008976</li> </ul> | <ul> <li>HER2+ aBC</li> </ul>         | · 2025-06-06                   | China                      |
|           |                                         |                                                  |                            | <ul> <li>NCT07043725</li> </ul> | early HER2+ BC                        | • 2025-06-29                   | China                      |
|           | DP303c                                  | CSPC ZhongQi                                     | JII.                       | <ul> <li>NCT06313086</li> </ul> | HER2+ aBC                             | • 2024-03-15                   | China                      |
|           | BL-M07D1                                |                                                  | Ш                          | <ul> <li>NCT06316531</li> </ul> | <ul> <li>HER2+ a/mBC</li> </ul>       | · 2024-03-18                   | China                      |
|           |                                         | Biokin                                           |                            | <ul> <li>NCT06830889</li> </ul> | <ul> <li>early HER2+ BC</li> </ul>    | · 2025-02-17                   | <ul> <li>China</li> </ul>  |
|           |                                         |                                                  |                            | <ul> <li>NCT06957886</li> </ul> | HER2-low m/rBC                        | - 2025-05-06                   | China                      |
|           | FS-1502                                 | Shanghai Fosun                                   |                            | <ul> <li>NCT05755048</li> </ul> | HER2+ a/mBC                           | · 2023-03-06                   | China                      |
|           | JSKN003 Jiangsu Alphamab                | liangeu Alphamah                                 | III                        | <ul> <li>NCT06079983</li> </ul> | <ul> <li>HER2-low m/rBC</li> </ul>    | · 2023-10-12                   | <ul> <li>China</li> </ul>  |
|           |                                         | orangsu Aspirantab                               |                            | - NCT06846437                   | HER2+ a/mBC                           | • 2025-02-26                   | China                      |
|           | MRG002                                  | Shanghai Miracogen                               | III                        | <ul> <li>NCT04924699</li> </ul> | HER2+ a/mBC                           | • 2021-06-14                   | China                      |
|           | RC48                                    | RemeGen                                          | BI                         | <ul> <li>NCT04400695</li> </ul> | HER2-low a/rBC                        | · 2020-05-22                   | China                      |

a/m/r BC\_advanced/metastatic/recurrent breast cancer \* are the marketed drugs to extend indications Note: 1 The highest stage refers to the highest clinical stage of candidates in China and the United States; 2 Represent the trial numbers, indiparts, 第5 13 23 5 these and locations of the Phase III clinical trials evaluating corresponding of the trial numbers and the corresponding indication of the trial numbers


Source: Clinical trials.gov; CDE; China Insights Consultancy

/

Introduction

# ROR1 is a receptor of Wnt5a which can trigger AKT phosphorylation and CREB activation and lead to tumor-cell proliferation for breast, ovarian and lung cancer and mantle cell lymphoma

#### The introduction to ROR1



- The receptor tyrosine kinase ROR1 functions as a receptor for Wnt5a and is broadly expressed during embryonic development and across various human cancers.
- Three splice variants of Ror1 have been characterized, and variant 1 encodes a transmembrane protein comprising 934 amino acids (aa) expressed on the cell surface.

#### Signalling Pathways and biological functions of ROR1

- ROR1 has the capability to engage with casein kinase 1 epsilon (CK1s), thereby triggering phosphoinositide 3-kinase-mediated AKT phosphorylation and cAMP-response-element-binding protein (CREB) activation, leading to augmented tumor-cell proliferation.
- □ Additionally, Wnt5a, acting as a ligand for ROR1, can induce ROR1-dependent signaling pathways, further promoting cell growth.

#### The expression levels of ROR1 in cancers

- ROR1 is expressed in both solid and blood tumors. RNA analysis
  has revealed the expression of ROR1 in various human solid tumors,
  such as breast ovarian, and lung cancer.
- Several studies have demonstrated the protein and cell-surface presence of ROR1 in B-cell chronic lymphocytic leukemia (B-CLL), mantle cell lymphoma (MCL), and a subset of B-cell acute lymphoblastic leukemia (B-cell ALL) using flow cytometry.



- Study has shown that the presence of ROR1 in human breast cancers carries biological and clinical implications, suggesting its potential as a therapeutic target for breast cancer treatment.
- Breast tumor tissues are categorized based on the portion of tumor cells binding with anti-ROR1 mAb. A score of 2 indicates moderate-level of ROR1 mAb staining on more than 50% of tumor cells

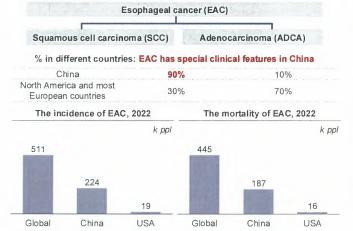
Copyright © 2024 China Insights Consultancy. All rights reserved.

#### **Table of contents**

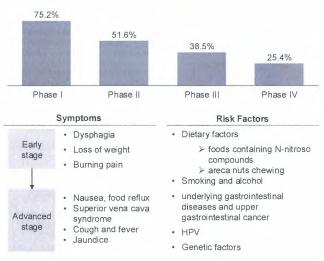
- Overview of global and China pharmaceutical market
- Overview of global and China cancer drug market
- Comparison of different drug modalities
- Overview of global and China lung cancer drug market
- Overview of global and China breast cancer drug market

#### 6. Overview of esophageal cancer drug market

- Overview of nasopharynx cancer drug market
- Overview of HNSCC drug market 8.
- Overview of GC&CRC drug market
- Overview of cervical cancer drug market
- Overview of urothelial carcinoma drug market
- Overview of glioma drug market 12
- Overview of blood tumor market
- 14. Others







#### Overview of esophageal cancer

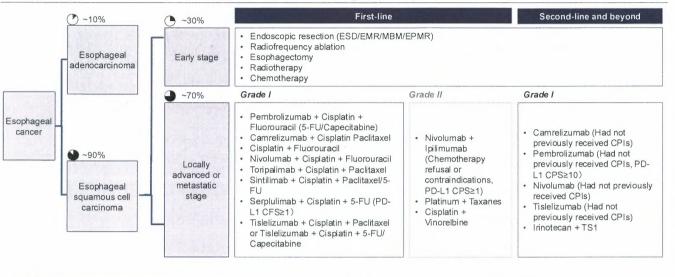
#### Introduction of esophageal cancer

· The EAC occurs through progressive accumulation of multiple genetic changes leading to malignant proliferation of esophageal cells and the overexpression or abnormal expression of proteins



#### 5-year Survival Rate in China, 2000-2018




Note: \*The information sources in the table include the Enterprises' annual report, expert interviews, company sales team recruitment information, etc.



Source: China Insights Consultancy

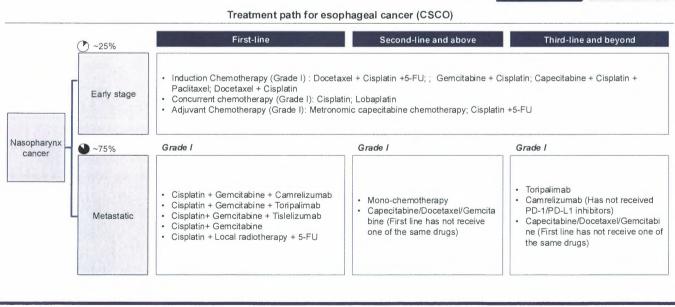
Copyright © 2024 China Insights Consultancy. All rights

#### Treatment path for esophageal cancer (CSCO)





Source: CSCO; China Insights Consultancy


/

Copyright © 2024 China Insights Consultancy. All rights

#### Treatment path for esophageal cancer

esophageal cancer

Treatment pathway



esophageal cancer

Second Line and Beyond

Clinical data

#### Pivotal Phase III Clinical Trials in Advanced-Stage ESCC

First Line of Treatment

vs Chemo

(ESCORT-1st)

ORR: 72.1% vs 62.1% mPFS: 6.9m vs 5.6m

mOS: 15.3m vs 12.0m

Sintilimab + Chemo vs Chemo (ORIENT-15) ORR: 66.1% vs 45.5% mPFS: 7.2m vs 5.7m

mOS: 16.7m vs 12.5m

Pembrolizumab vs Chemo (KEYNOTE-181) ORR: 16.7% vs 7.4% mOS: 8.2m vs 7.1m Camrelizumab vs Chemo (ESCORT) ORR: 20.2% vs 6.4% mOS: 8.3m vs 6.2m

Nivolumab + Chemo/Ipilimumab vs Chemo (CheckMate 648) ORR: 47% vs 28% vs 27% mOS: 13.2m vs 12.8m vs 10.7m

Pembrolizumab + Chemo vs

Chemo (KEYNOTE-590)

mPFS: 6.3m vs 5.8m mOS: 12.6m vs 9.8m

> Toripalimab + TP vs TP (JUPITER-06) ORR: 69.3% vs 52.1% mPFS: 5.7m vs 5.5m mOS: 17.0m vs 11.0m

Islelizumab + Chemo vs Chemo (RATIONALE-306) ORR: 63.5% vs 42.4% mPFS: 7.3m vs 5.6m mOS: 17.3m vs 10.6m

Tislelizumab vs Chemo (RATIONALE-302) ORR: 20.3% vs 9.8% mOS: 8.6m vs 6.3m Nivolumab vs Chemo (ATTRACTION-3) ORR: 19% vs 22% mOS: 10.9m vs 8.4m

CIC 灼识咨询

Source: FDA, CDE, ASCO 2024, China Insights Consultancy

All rights

right © 2024 Chine Insights Consultancy.

#### Table of contents

- 1. Overview of global and China pharmaceutical market
- 2. Overview of global and China cancer drug market
- 3. Comparison of different drug modalities
- 4. Overview of global and China lung cancer drug market
- 5 Overview of global and China breast cancer drug market
- 6 Overview of esophageal cancer drug market

#### 7. Overview of nasopharynx cancer drug market

- 8. Overview of HNSCC drug market
- 9. Overview of GC&CRC drug market
- 10 Overview of cervical cancer drug market
- 11. Overview of urothelial carcinoma drug market
- 12. Overview of glioma drug market
- 13 Overview of blood tumor market
- 14 Others



covright © 2024 China Insights Consultancy. A


#### Introduction of Nasopharyngeal Carcinoma (NPC)



- Nasopharyngeal carcinoma (NPC) is a cancer located in the nasopharynx or upper throat, typically originating from nasopharyngeal epithelial cells and classified as a type of epithelial tumor. Major risks for NPC include genetic factors, EB virus infection, dietary habits (like consuming preserved foods and betel nut) and environmental factors including occupational exposures
- Specific early diagnosis of NPC is weak and early screening is not widely implemented, leading to less than 20% of cases being diagnosed early, with the majority detected at mid to late stages
- Radiotherapy-based combination therapy has resulted in a 5-year overall survival rate of more than 80% and a localized regional control rate of more than 90% for nasopharyngeal cancer. However, local and/or regional recurrence still occurs in 10-15% of

The crude incidence rate of NPC in China is more than six times the U.S. level

| Number of new cases in<br>thousand (Crude incidence rate<br>per thousand population), 2022 | China         | America        | Global          |
|--------------------------------------------------------------------------------------------|---------------|----------------|-----------------|
| Overall Head and Neck Tumors                                                               | 145.6(0.1031) | 58.346(0.1751) | 892.128(0.1115) |
| Nasopharynx                                                                                | 51.01(0.0361) | 2.008(0.006)   | 120.434(0.0151) |



#### Main takeaways

Incidence rates are particularly high in Asia compared to that of Europe and America. China is a high-incidence area for NPC, with nearly half of new cases emerging particularly from the southern regions. The crude incidence rate of NPC is 1.51 per 100,000 person-years globally in 2022, but exceeds 3.6 in China, where the rate in the southern inland regions of China is about 30 times higher than in the north.

CIC 灼识咨询

Source: China Insights Consultancy

#### The overall 5-year-surivial ratio of patients with recurrent NPC is still low and the number of marketed targeted drugs remains limited, leaving ample room for future drug exploration

#### Treatment methods

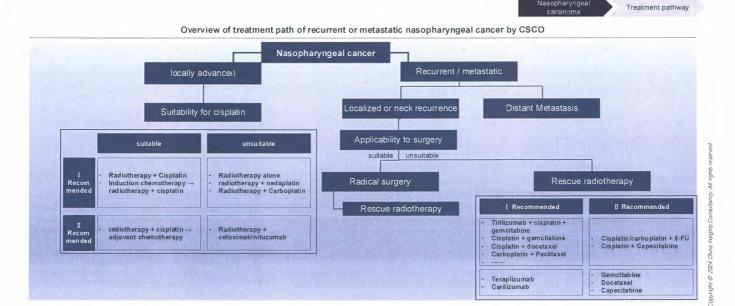


Due to its radiation sensitivity and unique location, nasopharyngeal carcinoma is primarily treated with radiotherapy. NPC's hidden position and complex surrounding anatomy make surgery challenging, while radiotherapy precisely targets the affected area with minimal impact on healthy tissue



For locally advanced NPC, induction chemotherapy combined with concurrent chemoradiotherapy is the main treatment approach. According to the 2023 CSCO NPC treatment guidelines, this method significantly enhances five-year overall survival (OS) and progression-free survival (PFS) rates compared to radiotherapy alone




Targeted and immune therapies are increasingly showing advantages during treatment. Epidermal growth factor (EGFR) is commonly expressed in advanced nasopharyngeal carcinoma tissues and EGFR targeted antibody drugs exhibit promising treatment effects in combination with chemotherapy drugs. Besides, recent studies also show promising anti-tumor efficacy and safety of PD-1 inhibitors alone or in combination with chemoradiotherapy when treating recurrent/metastatic NPC patients

Unmet Clinical Needs:



- The existing treatments for recurrence and metastasis of NPC are limited and the therapeutic effects and adverse events are still unsatisfying
  - √ ~10%-15% of NPC patients experience local and/or regional recurrence. Most recurrences are diagnosed at an advanced stage, making radiotherapy almost the only curative treatment available
  - ✓ The overall 5-year-surivial ratio of patients with recurrent NPC undergoing retreatment is only ~30%. The long-term adverse effects associated with radiotherapy are significant, with severe adverse events occurring in 48.1%-73.7% of cases, and deaths due to late complications ranging from 34.7%-69.2%.
- The number of marketed targeted drugs and ongoing clinical trials for NPC remains relatively limited, leaving ample room for future drug exploration
  - ✓ Currently, the main targeted drugs are monoclonal antibodies targeting EGFR (such as cetuximab and nimotuzumab). While cetuximab in combination with chemotherapy has shown good efficacy, it is associated with certain skin toxicity.

### Overview of treatment path of recurrent or metastatic nasopharyngeal cancer



CIC 灼识咨询

Source: CSCO, China Insights Consultancy

### Table of contents

- 1. Overview of global and China pharmaceutical market
- 2. Overview of global and China cancer drug market
- 3. Comparison of different drug modalities
- 4. Overview of global and China lung cancer drug market
- 5 Overview of global and China breast cancer drug market
- 6 Overview of esophageal cancer drug market
- 7. Overview of nasopharynx cancer drug market

### 8. Overview of HNSCC drug market

- 9. Overview of GC&CRC drug market
- 10. Overview of cervical cancer drug market
- 11. Overview of urothelial carcinoma drug market
- 12. Overview of glioma drug market
- 13. Overview of blood tumor market
- 14. Others



member @ 2024 China Instable Consultance All notice cosmo

### Introduction of Head and Neck Squamous Cell Carcinoma (HNSCC)



Head and neck cancer (HNC) is one of the most common cancers worldwide, and head and neck squamous cell carcinoma (HNSCC) is the main type of head and neck cancers. Head and neck squamous cancers include oral, pharyngeal, oropharyngeal, hypopharyngeal, laryngeal, nasal and nasopharyngeal squamous cell carcinoma. In 2022, there were nearly 900 thousand new cases of HNC in the world, accounting for 4.47% of all cancers. In that same year, nearly 460 thousand deaths from HNC occurred globally, accounting for 4.71% of all cancers.

HNSCC constitutes ~90% of HNC, and the remaining 10% of HNC originates from lymphocytes, connective tissue cells (muscles, blood vessels), and salivary gland cells Risk factors for HNSCC include exposure to tobacco carcinogens, excessive alcohol consumption, and HPV infection, with over 70% of oropharyngeal cancers linked to HPV. Men are 2 to 4 times more likely to develop HNSCC than women

| Number of new cases in thousand (Crude incidence rate per thousand population), 2022 | China                       | America        | Global          |  |
|--------------------------------------------------------------------------------------|-----------------------------|----------------|-----------------|--|
| Overall Non-nasopharyngeal Head and Neck Tumors                                      | 94.6(0.067)                 | 56.338(0.169)  | 771.694(0.0964) |  |
| Larynx                                                                               | 29.5(0.0209)                | 12.172(0.0365) | 189.191(0.0236) |  |
| Lips, Oral Cavity, and Pharynx                                                       | 65.1(0.0461) 44.166(0.1325) |                | 582.503(0.0728) |  |
| Proportion of Head and Neck Squamous Cell Carcinoma                                  |                             | ~90%           |                 |  |
| Head and Neck Squamous Cell Carcinoma                                                | ~85.14                      | ~50.7042       | ~694.5246       |  |



Source: NCCN, Drugs Des Devel Ther. China Insights Consultancy

### The treatment pathway for non-nasopharyngeal HNSCC has developed towards targeted therapy and immunotherapy

|     | ategories of non-<br>aryngeal HNSCC                | Tumor Category Analysis                                                                                                                                                                                                                                                                                                                           |  |  |  |
|-----|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | Oral Cancer                                        | <ul> <li>Non-healing ulcers on the lips or in the mouth, white or red<br/>patches inside the mouth, loose teeth, lumps in the mouth, and<br/>oral pain.</li> </ul>                                                                                                                                                                                |  |  |  |
|     |                                                    | Usually diagnosed in the early stages                                                                                                                                                                                                                                                                                                             |  |  |  |
|     | Oropharyngeal and<br>Hypopharyngeal<br>Tumors P16+ | <ul> <li>Symptoms include difficulty swallowing, pain during swallowing,<br/>or ear pain.</li> </ul>                                                                                                                                                                                                                                              |  |  |  |
| 741 |                                                    | Symptoms often appear in the late stages of the tumor                                                                                                                                                                                                                                                                                             |  |  |  |
| /   | Oropharyngeal and                                  | Presence of neck lumps and asymptomatic primary tumors.                                                                                                                                                                                                                                                                                           |  |  |  |
| (   | Hypopharyngeal<br>Tumors P16-                      | <ul> <li>HPV virus-related cancers, which generally have a relatively<br/>high survival rate</li> </ul>                                                                                                                                                                                                                                           |  |  |  |
|     |                                                    | <ul> <li>Laryngeal tumors present with voice changes or severe<br/>hoarseness, eventually leading to airway obstruction.</li> </ul>                                                                                                                                                                                                               |  |  |  |
| 7   | Laryngeal Tumors                                   | <ul> <li>Vocal cord tumors are usually diagnosed early; however,<br/>supraglottic laryngeal cancer (above the vocal cords) and<br/>subglottic laryngeal cancer (below the vocal cords) often have<br/>no symptoms until respiratory obstruction occurs, with the<br/>tumors only being discovered when they are large and<br/>advanced</li> </ul> |  |  |  |

Categories and treatment methods



- The current treatment efficacy is unsatisfactory for late-stage HNSCC patients
  - ✓ In all head and neck squamous cell carcinomas, over 60% of patients are diagnosed at an advanced local stage (III-IV, excluding M1). After comprehensive treatment. 40% to 60% of patients still experience local recurrence or distant metastasis, with a 5-year survival rate under 50%.
- Targeted therapy drugs are gradually becoming more diverse, and combination therapy is currently under exploration.
  - ✓ Cetuximab, the EGFR-targeting drug, showed initial effectiveness in treating HNSCC. Panitumumab, afatinib, and other drugs at the stage of conducting clinical trials potentially are expected to become new options.
  - ✓ PD-1/PD-L1 inhibitors have shown promising efficacy. Ongoing clinical trials are exploring combining targeted/immunological therapy with radiotherapy and chemotherapy.



HNSCC

Treatment pathway

Overview of treatment path of non-nasopharyngeal HNSCC by CSCO

| HNSCC Staging                  | Treatment Plan                        |                                                                                                                                                                                                                                                                                                                           |                                                                                                        |  |  |  |  |  |
|--------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Types of HNSCC                 | Patient<br>Stratification             | First-line Treatment                                                                                                                                                                                                                                                                                                      | Second-line and back-line treatment                                                                    |  |  |  |  |  |
| Early Stage Local<br>HNSCC     | Patients<br>Suitable for<br>Surgery   | Surgical resection; radiotherapy is also an option for oropharyngeal,<br>laryngeal, and hypopharyngeal cancers                                                                                                                                                                                                            |                                                                                                        |  |  |  |  |  |
| Early Stage Local<br>HNSCC     | Patients<br>Unsuitable for<br>Surgery | Radiotherapy; for nasopharyngeal cancer suitable for cisplatin use, combine radiotherapy with cisplatin                                                                                                                                                                                                                   |                                                                                                        |  |  |  |  |  |
| Recurrent/Metasta<br>tic HNSCC | Metastatic NPC                        | Cisplatin and gemcitabine     Cisplatin and docetaxel     Carboplatin and PTX                                                                                                                                                                                                                                             | Gemcitabine/docetaxel/capecitabine     Pembrolizumab/nivolumab/crizotinib/tripalimumab (ICIs)     PD-1 |  |  |  |  |  |
| Recurrent/Metasta<br>tic HNSCC | Non-NPC<br>Metastatic<br>HNSCC        | Cetuximab (an EGFR inhibitor) + cisplatin/carboplatin + 5-FU [EXTREME regimen] (also recommended with docetaxel and PTX). Pembrolizumab + cisplatin/carboplatin + 5-FU or pembrolizumab alone. KEYNOTE-048 showed that pembrolizumab is superior to the EXTREME regimen, establishing it as a first-line treatment option | Nivolumab     Pembrolizumab, MTX, docetaxel, PTX, and cetuximab     Afatinib                           |  |  |  |  |  |
| Recurrent/Metasta tic HNSCC    | Recurrent NPC                         | Recurrence: surgery combined with radiotherapy, or consider treatment<br>methods for metastatic NPC                                                                                                                                                                                                                       | .,                                                                                                     |  |  |  |  |  |

CIC 灼识咨询

Source: CSCO, China Insights Consultancy

# Overview of treatment path of non-nasopharyngeal HNSCC by CSCO

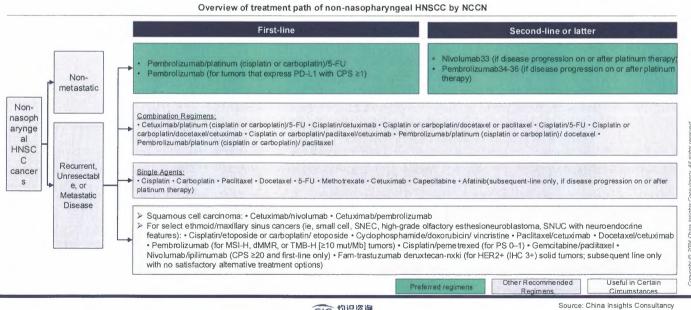
HNSCC

Treatment pathway

Overview of treatment path of non-nasopharyngeal HNSCC by CSCO

| HNSCC Staging                  | Treatment Plan →                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|--------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Types of HNSCC                 | Patient<br>Stratificat<br>ion             | First-line Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Second-line and back-line treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Recurrent/Metasta<br>tic HNSCC | Non-NPC<br>Recurrent<br>HNSCC             | Surgery + radiotherapy; if surgery is unsuitable, then radiotherapy alone, or consider treatment methods for metastatic tumors                                                                                                                                                                                                                                                                                                                                                                 | • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Late Stage Local<br>HNSCC      | Patients<br>Suitable<br>for<br>Surgery    | Oral cancer/T4 laryngeal cancer: Surgery combined with radiotherapy or chemoradiotherapy. Oropharyngeal cancer/T1-3 laryngeal cancer/hypopharyngeal cancer. If suitable for cisplatin, prioritize surgery supported by radiotherapy or chemoradiotherapy, followed by radiotherapy with cisplatin, and then induction chemotherapy followed by radiotherapy alone; if cisplatin is unsuitable, then surgery.                                                                                   | Suitable for cisplatin: Radiotherapy combined with cetuximab; for T1-3 laryngeal/hypopharyngeal cancer, induction chemotherapy followed by radiotherapy with cetuximab.     Unsuitable for cisplatin: Radiotherapy combined with cetuximab or radiotherapy alone.                                                                                                                                                                                                                     |  |  |  |  |
| Late Stage Local<br>HNSCC      | Patients<br>Unsuitabl<br>e for<br>Surgery | Suitable for cisplatin: Prioritize radiotherapy with cisplatin; for oropharyngeal/laryngeal cancer, consider induction chemotherapy followed by standalone chemotherapy; for nasopharyngeal cancer, consider induction chemotherapy followed by radiotherapy with cisplatin.     Unsuitable for cisplatin: Prioritize radiotherapy; for oropharyngeal/laryngeal cancer, consider radiotherapy with cetuximab; for nasopharyngeal cancer, consider radiotherapy with nedaplatin or carboplatin. | Suitable for cisplatin: For oral cancer, induction chemotherapy followed by radiotherapy; for T1-3 laryngeal cancer, radiotherapy with cetuximab; for nasopharyngeal cancer, second-line treatment with radiotherapy plus cisplatin followed by adjuvant chemotherapy, and third-line treatment with radiotherapy plus cisplatin and nivolumab.     Unsuitable for cisplatin: For nasopharyngeal cancer, second-line treatment with radiotherapy combined with cetuximab or nivolumab |  |  |  |  |

Treatment pathway

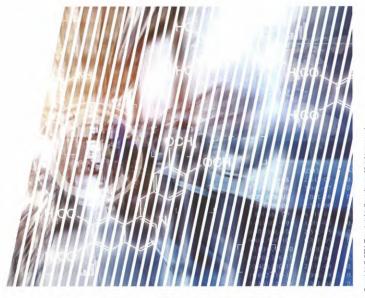

| HNSCC Staging                  | Treatment Plan                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|--------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Types of HNSCC                 | Patient<br>Stratificat<br>ion             | First-line Treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Second-line and back-line treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Recurrent/Metasta<br>tic HNSCC | Non-NPC<br>Recurrent<br>HNSCC             | Surgery + radiotherapy; if surgery is unsuitable, then radiotherapy alone, or consider treatment methods for metastatic tumors                                                                                                                                                                                                                                                                                                                                                                 | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Late Stage Local<br>HNSCC      | Patients<br>Suitable<br>for<br>Surgery    | Oral cancer/T4 laryngeal cancer: Surgery combined with radiotherapy or chemoradiotherapy. Oropharyngeal cancer/T1-3 laryngeal cancer/hyp opharyngeal cancer: If suitable for cisplatin, prioritize surgery supported by radiotherapy or chemoradiotherapy, followed by radiotherapy with cisplatin, and then induction chemotherapy followed by radiotherapy alone; if cisplatin is unsuitable, then surgery.                                                                                  | Suitable for cisplatin: Radiotherapy combined with cetuximab; for T1-3 laryngeal/hypopharyngeal cancer, induction chemotherapy followed by radiotherapy with cetuximab.     Unsuitable for cisplatin: Radiotherapy combined with cetuximab or radiotherapy alone.                                                                                                                                                                                                                     |  |  |  |  |  |
| Late Stage Local<br>HNSCC      | Patients<br>Unsuitabl<br>e for<br>Surgery | Suitable for cisplatin: Prioritize radiotherapy with cisplatin; for oropharyngeal/laryngeal cancer, consider induction chemotherapy followed by standalone chemotherapy; for nasopharyngeal cancer, consider induction chemotherapy followed by radiotherapy with cisplatin.     Unsuitable for cisplatin: Prioritize radiotherapy; for oropharyngeal/laryngeal cancer, consider radiotherapy with cetuximab; for nasopharyngeal cancer, consider radiotherapy with nedaplatin or carboplatin. | Suitable for cisplatin: For oral cancer, induction chemotherapy followed by radiotherapy; for T1-3 laryngeal cancer, radiotherapy with cetuximab; for nasopharyngeal cancer, second-line treatment with radiotherapy plus cisplatin followed by adjuvant chemotherapy, and third-line treatment with radiotherapy plus cisplatin and nivolumab.     Unsuitable for cisplatin: For nasopharyngeal cancer, second-line treatment with radiotherapy combined with cetuximab or nivolumab |  |  |  |  |  |



Source: CSCO, China Insights Consultancy

### Overview of treatment path of non-nasopharyngeal HNSCC by NCCN

Treatment pathway



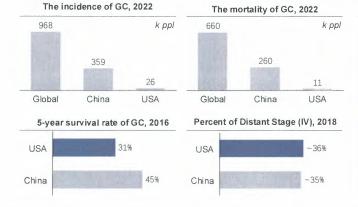

### Table of contents

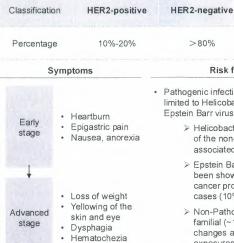
- Overview of global and China pharmaceutical market
- Overview of global and China cancer drug market
- Comparison of different drug modalities
- Overview of global and China lung cancer drug market 4
- Overview of global and China breast cancer drug market
- Overview of esophageal cancer drug market
- Overview of nasopharynx cancer drug market
- 8 Overview of HNSCC drug market

### 9. Overview of GC&CRC drug market

- Overview of cervical cancer drug market
- Overview of urothelial carcinoma drug market
- 12 Overview of glioma drug market
- Overview of blood tumor market
- 14. Others




Classification of GC by CSCO in 2022




### Overview of gastric cancer

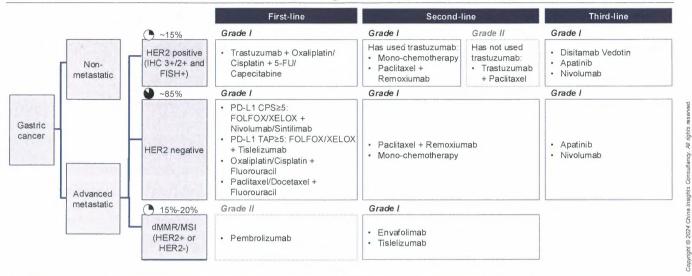
Introduction of gastric cancer Gastric cancer (GC) begins in the mucus-producing cells in the innermost lining of the stomach. Nearly all GC are adenocarcinomas, which are mainly caused by gastric mucosa barrier damage

· GC is the 5th most common cancer worldwide which is more common in countries in East Asia than in the US and other Western countries





- Risk factors · Pathogenic infections includes but not limited to Helicobacter pylori (H. pylori) or Epstein Barr virus (EBV)
  - > Helicobacter Pylori: 90% of cases of the non-cardia subtype are associated with the bacterium


Introduction

dMMR/MSI\*

15%-20%

- > Epstein Barr Virus: EBV has also been shown to influence gastric cancer progression in a subset of cases (10%)
- Non-Pathogenic Influences: familial (~10%) or hereditary changes and environmental exposures

### Treatment path for gastric cancer (CSCO)





Source: CSCO; China Insights Consultancy

### Overview of colorectal cancer

Colorectal cancer

Introduction

64.0

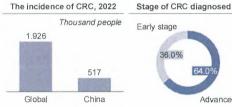
Advanced

### Overview of colorectal cancer

### Introduction of ovarian cancer

As the third most common malignancy and the second most deadly cancer, colorectal cancer (CRC) induces estimated 1.9 million incidence cases and 0.9 million deaths worldwide in 2020. The global number of new CRC cases is predicted to reach 3.2 million in 2040, based on the projection of aging, population growth, and human development. In 2020, CRC accounts for 10% of global cancer incidence and 9.4% of cancer deaths, just lower than lung cancer that comprises 18% of deaths

### Symptoms:


- ☐ A change in bowel habits
- ☐ Blood in or on your stool (bowel movement)

  □ Diarrhea, constipation, or
- feeling that the bowel does not empty all the
- ☐ Abdominal pain, aches, or cramps that don't go away
- Weight loss and you don't know why

### Risk factors:

- ☐ Getting older
- ☐ Inflammatory bowel disease such as Crohn's disease or ulcerative colitis
- ☐ A personal or family history of colorectal cancer or colorectal polyps
- ☐ A genetic syndrome such as familial adenomatous polyposis (FAP) or hereditary non-polyposis colorectal cancer (Lynch syndrome)
- Lifestyle factors that may contribute to an increased risk of colorectal cancer:
- ☐ Lack of regular physical activity ☐ A diet low in fruit and vegetables
- ☐ A low-fiber and high-fat diet, or a diet high in processed meats
- □ Overweight and obesity
- □ Alcohol consumption
- □ Tobacco use

### Epidemiology



In China, CRC patients will usually observe cancer in the advanced stage. Since the early symptoms of colorectal cancer are not significant, more obvious symptoms such as blood in the stool, abdominal mass, and persistent pain in the pelvis or lower abdomen will appear as the cancer gradually progresses to the advanced stage

Treatment pathway

### Treatment path for colorectal cancer (CSCO)



Note: \* ICIs: Immune checkpoint inhibitors



treated with innotecan:

Bevacizumab

FOLFIRI/CapivasertibEOX ±

FIRI ± Bevacizumab: (2) Non-

intensive treatment: Fluorouracil

± Bevacizumab

BRAF mutant

type

Source: CSCO; China Insights Consultancy

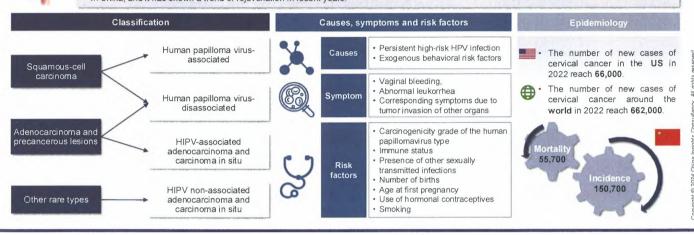
Regorafenib; Fruquintinib;

Trifluridine and Tipiracil Hydrochloride

### Table of contents

- Overview of global and China pharmaceutical market
- Overview of global and China cancer drug market
- Comparison of different drug modalities
- Overview of global and China lung cancer drug market
- Overview of global and China breast cancer drug market
- Overview of esophageal cancer drug market
- Overview of nasopharynx cancer drug market
- 8. Overview of HNSCC drug market
- 9. Overview of GC&CRC drug market

### Overview of cervical cancer drug market 10.


- Overview of urothelial carcinoma drug market
- Overview of glionia drug market
- Overview of blood tumor market
- 14



### Introduction of cervical cancer



> Definition: Cervical cancer, also known as uterine cervix cancer, is the most common gynecological malignancy that originates in the cervical region of the uterus. Early symptoms are not obvious, and symptoms such as vaginal bleeding appear in the late stage. It can be prevented by regular screening and vaccination. The incidence and mortality rates of cervical cancer rank first among malignant tumors of the female reproductive system in China, and it has shown a trend of rejuvenation in recent years.



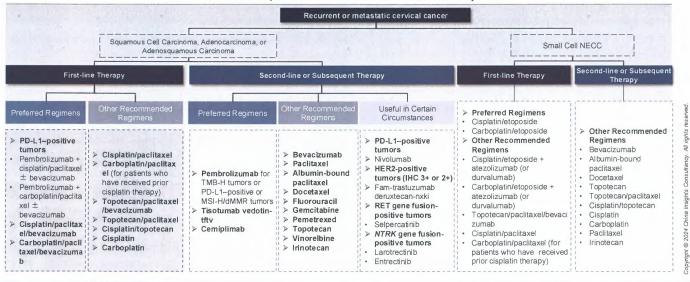


Source: GLOBOCAN; Chin J Oncol; IARC; China Insights Consultancy

0.0

### Overview of treatment path of recurrent or metastatic cervical cancer

Cervical cancer


Treatment pathway

### Overview of treatment path of recurrent or metastatic cervical cancer by CSCC

|                        | Level I                                                                                                                                                         | Lever II                                                                                                                                                                                                                                                                                                                                 | Level III                                                                                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First-line<br>Therapy  | Cisplatin + Paclitaxel+ Bevacizumab or Carboplatin + Paclitaxel + Bevacizumab or Cisplatin + Paclitaxel or Carboplatin + paclitaxel (previously used cisplatin) | Pembrolizumab combined with chemotherapy + cisplatin + paclitaxel ± bevacizumab (applicable to PD-L1 positive tumors) Pembrolizumab combined with chemotherapy + carboplatin + paclitaxel ± bevacizumab (applicable to PD-L1 positive tumors) Topotecan + paclitaxel + bevacizumab Topotecan + paclitaxel Cisplatin + topotecan          | Cisplatin     carboplatin     Paclitaxel                                                                                                                                        |
| Second-line<br>Therapy |                                                                                                                                                                 | Albumin-bound paclitaxel     Docetaxel     Gemcitabine     Pemetrexed     Topotecan     Cadonilimab (recurrent or metastatic cervical cancer that has failed with platinum-based chemotherapy)     Serplulimab (adults with MSI-H or dMMR solid tumors)     Envafolimab (MSI-H or dMMR solid tumors)     Participate in clinical studies | Ifosfamide Mitomycin Fluorouracil Vinorelbine Ininotecan Zimberelimab Pembrolizumab (for tumors that are PD-L1 positive or MSI-H or dMMR) Nivolumab (for PD-L1-positive tumors) |
| Others                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                          | Pembrolizumab (for TMB-H tumors     Larotrectinib or Entrectinib (for tumors with NTRK gene fusion)                                                                             |



### Overview of treatment path of recurrent or metastatic cervical cancer by NCCN





Source: NCCN; China Insights Consultancy

### y

### Table of contents

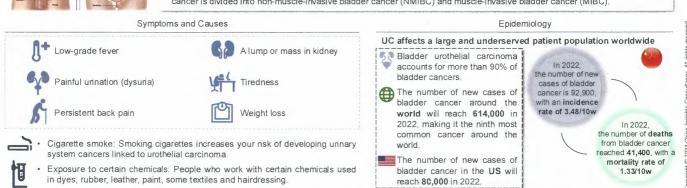
- 1. Overview of global and China pharmaceutical market
- 2. Overview of global and China cancer drug market
- Comparison of different drug modalities
- 4. Overview of global and China lung cancer drug market
- 5. Overview of global and China breast cancer drug market
- Overview of esophageal cancer drug market
- 7. Overview of nasopharynx cancer drug market
- 8 Overview of HNSCC drug market
- 9. Overview of GC&CRC drug market
- 10 Overview of cervical cancer drug market

### 11. Overview of urothelial carcinoma drug market

- 12. Overview of glioma drug market
- 13 Overview of blood tumor market
- 14 Others



Copyright © 2024 China Insights Consultancy. All rights reserv


Urothelial carcinoma

Introduction

### Introduction of of urothelial carcinoma

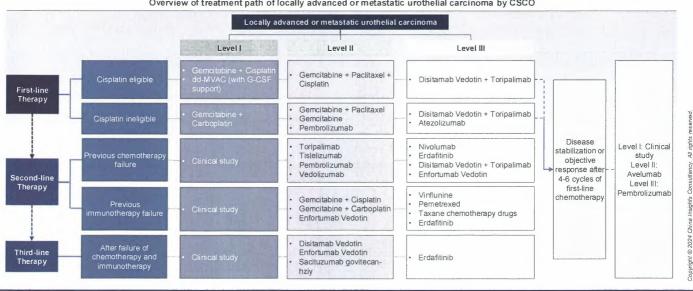


- > Bladder cancer occurs when cells in the bladder start to grow without control. The bladder is a hollow, balloon-shaped organ in the lower part of the abdomen that stores urine. The bladder has a muscular wall that allows it to get larger to store urine made by the kidneys and to shrink to squeeze urine out of the body. Bladder cancer most often begins in the cells (urothelial cells) that line the inside of your bladder. Urothelial cells are also found in your kidneys and the tubes (ureters) that connect the kidneys to the bladder. Almost all bladder cancers are urothelial carcinomas
- > UC can be divided into upper urothelial cancer (renal pelvis, ureter) and lower urothelial cancer (bladder, urethra). Bladder cancer is divided into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC).



CIC 灼识咨询

Source: GLOBOCAN; Chin J Oncol; IARC; China Insights Consultancy


00

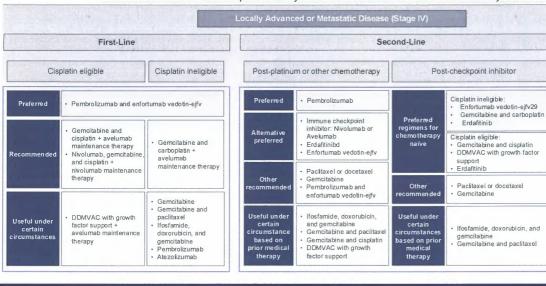
### Overview of treatment path of locally advanced or metastatic urothelial carcinoma

Urothelial carcinoma

Treatment pathway

Overview of treatment path of locally advanced or metastatic urothelial carcinoma by CSCO




CIC 灼识咨询

Source: CSCO; China Insights Consultancy

Urothelial carcinoma

Treatment pathway

Overview of treatment path of locally advanced or metastatic urothelial carcinoma by NCCN



Preferred regimens

Subsequent-Line

 Enfortumab vedotin-ejfv
 Erdafitinib Other recommended regimens

 Sacituzumab govitecanhziy
• Gemcitabine
• Paditaxel or docetaxel

· Ifo sfamide, doxorubicin, and gemoitabine · Gemcitabine and

paclitaxel
• Gemcitabine and cisplatin

· DDMVAC with growth

factor support



Source: NCCN; China Insights Consultancy

nights

Copyright © 2024 China Insights Consultancy. All

### Table of contents

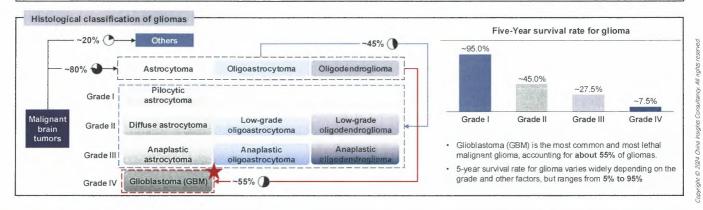
- Overview of global and China pharmaceutical market
- Overview of global and China cancer drug market
- Comparison of different drug modalities
- Overview of global and China lung cancer drug market 4
- 5 Overview of global and China breast cancer drug market
- 6 Overview of esophageal cancer drug market
- Overview of nasopharynx cancer drug market
- Overview of HNSCC drug market
- 9. Overview of GC&CRC drug market
- Overview of cervical cancer drug market
- Overview of urothelial carcinoma drug market

### Overview of glioma drug market 12.

- Overview of blood tumor market



Glioma is the most common primary craniocerebral tumor, the 5-year survival rate largely depends on the classified grade, and glioblastoma usually only accounts for around 7.5% of 5-year survival rate


> Glioma introduction



Overview of glioma



- · Brain glioma is a tumor originating from brain glial cells, which is the most common primary tumor caused by brain and spinal cord glial canceration. The risk factors include congenital genetic risk factors and environmental carcinogenic factors
- Gliomas can vary in severity from low-grade (less aggressive) to high-grade (more aggressive) tumors, and can be classified based on the type of glial cell they rise from



CIC 灼识咨询

Source: Brain Tumor Research; China Insights Consultancy

### Treatment path for Glioma

**TTFields Therapy** 

Treatment pathway Treatment path for Glioma (CSCO) Supportive Therapy Grade I Grade II Grade III Treatment Method: Maximum safe resection of the tumor Follow-up Treatment: Depending on the molecular characteristics of the tumor, the extent of resection, and the patient's condition, radiotherapy or chemotherapy may be required Surgical (not completely resected or age ≥ 40 years) Radiotherapy Early radiotherapy may be conducted based Post-surgical radiotherapy, for GBM a total dose of 54-60 Gy is on risk assessment recommended Pharmacological Including symptom Treatment PCV regimen or TMZ TMZ (Stupp protocol for GBM) control, rehabilitation therapy, psychosocial Re-treatment of Recurrent Glioma support, etc. Second-line and beyond Includes tumor vaccines, on colvtic viruses, immune checkpoint Immunotherapy inhibitors, and CAR-T cell therapy, among others Utilizing a portable device to generate a

medium-frequency, low-intensity electric field

for tumor treatment

### Unmet needs of Glioma



### High recurrence rate and short survival period

- The average survival time for glioblastoma multiforme (GBM) is only 12-15 months, and the recurrence rate is extremely high. Existing treatment
  methods are difficult to completely cure or control the disease for a long period.
- The infiltrative growth characteristics of gliomas make it difficult to distinguish the tumor from the surrounding normal tissue, making it hard to completely remove during surgery, thereby increasing the risk of recurrence.

### Blood-brain barrier limitations and systemic side effects

- The physiological protective function of the BBB prevents the brain delivery of most drugs, and although the blood-tumor barrier (BTB) forms in certain circumstances and allows drugs to pass through, its permeability is heterogeneous, making strategies relying on BTB to achieve effective drug concentrations difficult to succeed.
- Due to the restrictions of the BBB, many anticancer drugs need to be used at higher doses to ensure that sufficient drug concentrations reach the tumor site. This can lead to an increase in systemic toxicity, such as nausea, vomiting, bone marrow suppression, etc.



### Uncertainty of therapeutic effects

- Gliomas are a group of heterogeneous diseases, and even gliomas of the same pathological type and grade can have significant differences in therapeutic effects.
- Factors such as age, tumor location, pathological grading, extent of surgery, tumor size, and other individual patient characteristics can affect therapeutic outcomes and prognosis.



Source: Medical Research Review; China Insights Consultancy

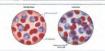
### Table of contents

- 1. Overview of global and China pharmaceutical market
- 2. Overview of global and China cancer drug market
- 3. Comparison of different drug modalities
- 4. Overview of global and China lung cancer drug market
- 5 Overview of global and China breast cancer drug market
- 6. Overview of esophageal cancer drug market
- 7 Overview of nasopharynx cancer drug market
- 8. Overview of HNSCC drug market
- 9. Overview of GC&CRC drug market
- 10. Overview of cervical cancer drug market
- 11 Overview of urothelial carcinoma drug market
- 12 Overview of glioma drug market

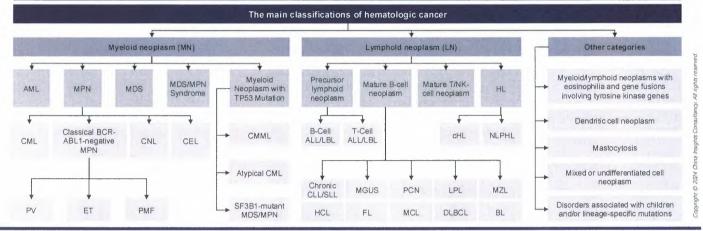
### 13. Overview of blood tumor market

14 Others




### Hematologic malignancy

- Hematologic malignancies begin in the cells of the immune system or in blood-forming tissue, such as the bone marrow


Hematologic malignancy

Introduction

### Introduction to hematologic malignancy



- · Hematologic malignancies begin in the cells of the immune system or in blood-forming tissue, such as the bone marrow
- · Common types of hematologic cancer are lymphoma, myeloma, and leukemia





Source: China Insights Consultancy

### **Table of contents**

- Overview of global and China pharmaceutical market
- 2. Overview of global and China cancer drug market
- 3 Comparison of different drug modalities
- 4. Overview of global and China lung cancer drug market
- 5. Overview of global and China breast cancer drug market
- 6. Overview of esophageal cancer drug market
- 7. Overview of nasopharynx cancer drug market
- 8. Overview of HNSCC drug market
- 9. Overview of GC&CRC drug market
- 10. Overview of cervical cancer drug market
- 11 Overview of urothelial carcinoma drug market
- 12. Overview of glioma drug market
- 13 Overview of blood tumor market

### 14. Others



10 wasternoon advised and book of thousand

### Overview of anesthetic drugs



### Introduction

- Anesthesia drugs are essential in medical practice to induce a temporary loss of sensation or awareness, facilitating the
  performance of surgical procedures and other interventions that would otherwise cause significant pain or distress to patients.
   These drugs can be administered through various modalities, including inhalation, intravenous injection, and regional nerve block
  techniques
- The administration and choice of anesthesia depend on factors such as the type of surgery, patient health status, and expected duration of the procedure. Advances in anesthesia drugs and techniques continue to improve patient safety, recovery times, and overall outcomes in surgical care

### Classification of anesthetic drugs

|                      | Anesthetic drugs                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                 |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                      | General anesthetics                                                                                                                                                                                                                                                                         | Local anesthetics                                                                                                                                                                                                               |  |  |
| Definition           | <ul> <li>Anesthetics that can induce a reversible state of unconsciousness</li> </ul>                                                                                                                                                                                                       | Anesthetics that cause localized numbness                                                                                                                                                                                       |  |  |
| Mechanism            | <ul> <li>Acts on the synapses between nerve cells in different ways,<br/>inhibits the brain or nerve centers by changing the release<br/>of neurotransmitters in the synapses, making them unable<br/>to perceive pain, thereby achieving the purpose of clinical<br/>analgesia.</li> </ul> | By blocking the occurrence and conduction of local<br>sensory nerve impulses in the human body, the pain sign<br>cannot be transmitted to the cerebral cortex, reversibly<br>causing the disappearance of pain in local tissues |  |  |
| Representative drugs | Inhaled anesthetics: ether, halothane, etc.     Intravenous anesthetics: sodium thiopental, ketamine, etc.                                                                                                                                                                                  | Lidocaine, bupivacaine, ropivacaine, tetracaine, etc.                                                                                                                                                                           |  |  |



Source: China Insights Consultancy

### Updated 2024 base year

### Overview of anesthetic drug market in China

Anesthetic drug

Market size

### Market size of anesthetic drug in China, 2018-2033E

|      |             |             |       | 2018-20 | 24 2 | 024-2033E |       |       |       |       |       |       |       |       |             |
|------|-------------|-------------|-------|---------|------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|
| Anes | thetic Drug | Market in ( | China | 5.3%    |      | 5.5%      | _     |       |       |       |       |       |       | E     | Billion RMB |
| 14.9 | 16.3        | 16.0        | 18.1  | 18.1    | 20.4 | 20.3      | 21.6  | 23.0  | 24.4  | 25.8  | 27.2  | 28.6  | 30.0  | 31.4  | 32.8        |
| 2018 | 2019        | 2020        | 2021  | 2022    | 2023 | 2024      | 2025E | 2026E | 2027E | 2028E | 2029E | 2030E | 2031E | 2032E | 2033E       |

### Entry barriers

# Stringent regulatory requirements barrier

 The anesthesia drugs market is highly regulated, with complex frameworks imposed by health authorities. Complying with these stringent regulations can significantly increase development costs and timelines, posing a major barrier to entry.

# High research and development costs barrier

 Developing new anesthesia drugs requires extensive research and clinical trials to ensure safety and efficacy. The high costs associated with R&D act as a deterrent for new entrants, as they need to invest substantial resources before generating any revenue.

### Established brands and customer loyalty barrier

 Major pharmaceutical companies have wellestablished brands and loyal customer bases in the anesthesia drugs market. Breaking into this market and gaining market share can be challenging for new players, as healthcare providers often prefer familiar and trusted brands.

### Market drivers

# Increasing prevalence of chronic diseases

The growing incidence of chronic conditions such as cancer, cardiovascular diseases, and osteoarthritis is a major driver for the anesthetic drugs market. These diseases often require surgical interventions, which in turn increases the demand for general anesthesia drugs.

# Advancements in R&D and funding

Increasing funding from private and government organizations for the development of pharmaceutical manufacturing, as well as advancements in R&D activities for the formulation of new anesthetic drugs, are propelling the growth of the market.

# Emphasis on patient safety and regional anesthesia

Developments in anesthetic drugs and techniques that minimize side effects and improve recovery times, as well as the growing interest in regional anesthesia, are contributing to the market's expansion.



Source: China Insights Consultancy

ght © 2024 China Insights Consultancy.

### Overview of antiviral drugs

Antiviral drug

Overview

### Overview of antiviral drugs

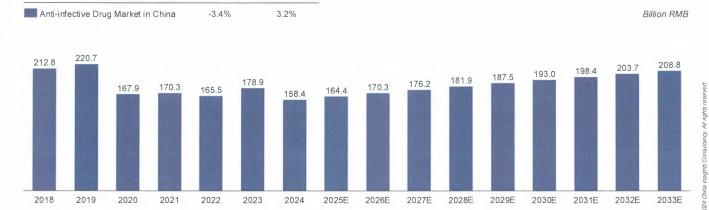
### Introduction



- Antiviral drugs play a critical role in combating infections caused by bacteria, viruses, fungi, and parasites, thus safeguarding public
  health. They are indispensable in preventing and treating infectious diseases, which, if left unchecked, can lead to significant
  morbidity and mortality
- Antiviral drugs encompass a wide range of categories, including antibiotics, antivirals, antifungals, and antiparasitics. These
  medications work through various mechanisms, such as inhibiting the growth of pathogens, disrupting their cellular structures, or
  interfering with their metabolic pathways. The global demand for antiviral drugs is driven by factors such as the prevalence of
  infectious diseases, the emergence of drug-resistant strains, and the continuous need for new and more effective treatments

### Classification of antiviral drugs

|                      |                                                                                                                                     | Olassinoation of anathra                                                                                                                                         | urago                                                                                                                             |                                                                                                                                     |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                      |                                                                                                                                     | Antiviral drugs                                                                                                                                                  |                                                                                                                                   |                                                                                                                                     |  |  |
|                      | Antibiotics                                                                                                                         | Antivirals                                                                                                                                                       | Antifungals                                                                                                                       | Antiparasitics                                                                                                                      |  |  |
| Mechanism            | Inhibition of Cell Wall Synthesis Inhibition of Protein Synthesis Alteration of Cell Membranes Inhibition of Nucleic Acid Synthesis | Increase the cell's resistance to<br>a virus, suppress the virus<br>adsorption or its diffusion into<br>the cell and its deproteinization<br>process in the cell | Alteration in drug target     Alteration in sterol biosynthesis     Reduction in the intercellular concentration of target enzyme | Disrupt critical cellular functions, such as DNA replication or protein synthesis, causing metabolic dysfunction and parasite death |  |  |
| Representative drugs | <ul> <li>Gentamicin, Cephalexin,<br/>Ertapenem, etc.</li> </ul>                                                                     | Indinavir, Nevirapine, etc.                                                                                                                                      | Terbinafine, Flucytosine, etc.                                                                                                    | <ul> <li>Amodiaquine, Clindamycin-<br/>quinine, etc.</li> </ul>                                                                     |  |  |


2018-2024

2024-2033E



Market size

### Market size of anti-infective drug in China, 2018-2033E



The market experienced a contraction from 2020 to 2022 due to the combined impact of VBP policies, which resulting in a reduction in drug prices, and the COVID-19 pandemic, which disrupted supply chains and reduced healthcare facility access

CIC 灼识咨询

Source: China Insights Consultancy

### Overview of antiviral drug market in China

Barriers & drivers

### Entry barriers

Technical barrier

 The research and development of antiviral drugs requires a high degree of technical strength and expertise. Newly entered companies need to invest a lot of money and time to establish R&D teams, accumulate technical experience, and conduct clinical trials.

Market entry barrier

The antiviral drug market has formed a relatively stable competitive landscape. Newly entered companies need to invest a lot of money to establish their brand image, develop sales channels, and deal with fierce competition from competitiors.

Regulations and policy barrier

The antiviral drug industry is subject to strict regulations and policies, including drug registration, approval, production, sales and other aspects. Newly entered companies need to understand and comply with these regulations and policy requirements, otherwise they will face serious legal risks and business risks.

### Market drivers

Demand for prevention and treatment of infectious diseases With the continuous outbreak and epidemic of infectious diseases around the world, such as influenza, AIDS, and new coronavirus, the demand for antiviral drugs continues to increase. Therefore antiviral drugs play a vital role in the prevention and treatment of infectious diseases.

Technological innovation

In the process of antiviral drug R&D, technological innovation is an important driving force. With the continuous advancement of key technologies such as molecular biology, genetic engineering, and immunology, the R&D of antiviral drugs has become more efficient and precise.

Policy support

Governments have continued to increase their support for the antiviral drug industry and promote the development of the industry through policy guidance, capital investment, etc. Especially, the Chinese government think highly of the prevention and control of infectious

### Overview of Traditional Chinese Medicine (TCM)

### Introduction



Huangqin

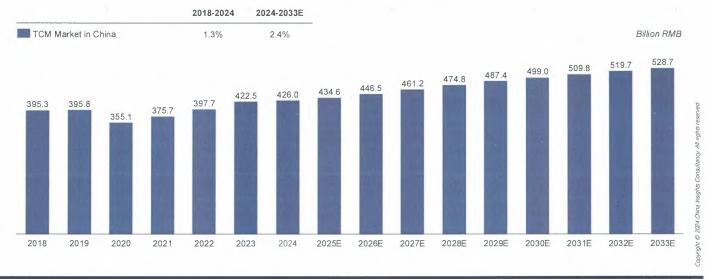
• Traditional Chinese Medicine (TCM) is a complete medical system that has been used to diagnose, treat, and prevent illnesses for more than 2,000 years. Chinese herbology is the theory of traditional Chinese herbal therapy, which accounts for the majority of treatments in TCM. Other practices include acupuncture, diet and massage, etc. Herbal medicine is the use of plants to treat disease and enhance general health and wellbeing, Chinese herbal mixtures have been used to treat irritable bowel syndrome, Tourette syndrome, and many other disorders. For example, some evidence suggests that the herb Huangqi (黄芪) and Chaihuang (崇贵) may improve quality of life for patients. The rising global acceptance of traditional Chinese medicine has bolstered the market potential for both Huangqi and Chaihuang, positioning them as valuable assets in preventive and therapeutic healthcare, supported by modern pharmacological studies and a long history of safe usage

### Introduction of representative TCM

# Representative TCM Huangqi (黄芪), also known as Astragalus \*\*Huangqi is renowned for its immunomodulatory and anti-inflammatory properties, traditionally used to enhance immune function. It is prescribed for chronic fatigue, respiratory infections, and as an adjunct therapy in cancer treatment. The growing interest in natural and holistic health solutions has increased the demand for Huangqi-based products \*\*Chaihuang (柴黄), a formulation combining Bupleurum (Chaihu) and It is commonly used for upper respiratory tract infections, hepatitis, and digestive issues, working by modulating the immune



Source: China Insights Consultancy


20250925

### Key policies of the PRC government in promoting traditional Chinese medicine (2024-2025)

response and exerting anti-inflammatory effects

| Date     | Policy                                                                                                                                                         | Main Content                                                                                                                                                                                                                                                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mar 2025 | State Council General Office Notice on Improving the Quality of TCM and Promoting High-Quality Development of the TCM Industry (国务院办公厅关于提升中药质量促进中医药产业高质量发展的意见) | Optimizes procurement and tendering policies for TCM products, implements full-process traceability and monitoring for Chinese patent medicines, encourages brand building, clinical value evaluation, technology-driven innovation, and supports high-quality industrial development across the TCM sector.       |
| Jul 2024 | Special Provisions on the Management of TCM Standards<br>(《中药标准管理专门规定》)                                                                                        | Strengthens standardization management across the entire TCM production chain, including raw herbs, decoction pieces, and processing methods; promotes production upgrades, quality enhancement, scientific research on TCM standards, and international standard alignment.                                       |
| Jul 2024 | Action Plan for Standardization of Traditional Chinese<br>Medicine (2024-2026)<br>(《中医药标准化行动计划(2024-2026年)》)                                                   | Establishes a comprehensive TCM standards system covering national, industry, regional, and group levels; encourages development of regional and local TCM standards, integration with local medicinal resources, and alignment with technological innovation to improve product quality and clinical consistency. |

### China Traditional Chinese Medicine Market Size, 2018-2033E



CIC 灼识咨询

Source: China Insights Consultancy

### Overview of processed TCM market in China

Barriers & drivers

### Entry barriers

Raw material sourcing barrier

Securing a reliable and high-quality supply of raw medicinal herbs and materials is crucial for Processed TCM manufacturers. New entrants may face challenges in establishing trusted relationships with suppliers, ensuring traceability, and maintaining consistent quality standards for their raw materials.

Brand recognition and market access barrier

The Processed TCM market in China is dominated by well-established brands with strong brand recognition and loyal customer bases. New entrants may struggle to differentiate their products, build brand awareness, and gain access to distribution channels controlled by established players.

Distribution channel barrier

Establishing a robust distribution network and gaining access to traditional medicine practitioners, hospitals, and retail channels can be a significant hurdle for new entrants. Existing players often have well-established relationships and distribution agreements that create barriers for newcomers.

### Market drivers

Cultural and historical significance

As an integral part of Chinese heritage, TCM is trusted and utilized by many for its traditional approach to healthcare. The Chinese government promotes TCM as a national treasure and includes it in national health policies, which reinforces its importance and drives market demand.

Integration with modern medicine

The integration of TCM with modern medical practices is creating a dual approach to healthcare, increasing the demand for processed TCM products.

Health and wellness trends

 With a growing focus on holistic health and wellness, consumers are seeking natural and integrative medicine options. Processed TCM products, which often emphasize herbal remedies and natural components, are benefiting from this trend.

### Overview of parenteral nutrition

### Introduction

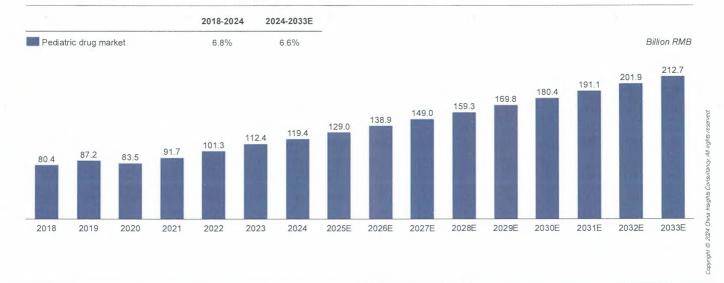
Parenteral nutrition (PN) is a life-sustaining therapy that provides nutritional support to patients who are unable to meet their nutritional needs through oral or enteral routes. Medium and long chain fat emulsion injections are a critical component of parenteral nutrition, supplying essential fatty acids and calories that help maintain energy balance, support cellular functions, and modulate immune responses. These emulsions are composed of triglycerides derived from medium-chain fatty acids (MCFAs) and long-chain fatty acids (LCFAs), offering a balanced and efficient energy source. The integration of both MCFAs and LCFAs enhances the metabolic profile and tolerance of the fat emulsion, making it suitable for a wide range of patients, including those with impaired fat metabolism

| Examples of | clinical | conditions | requiring | PN |
|-------------|----------|------------|-----------|----|
|-------------|----------|------------|-----------|----|

|                                                                                    | Examples of official of                               | onation requiring in                                                                                                                                                                                                                                   |  |  |
|------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Condition                                                                          | Mechanism/Indication for PN                           | Example                                                                                                                                                                                                                                                |  |  |
| Short bowel<br>Intestinal fistula<br>Extensive intestinal mucosal disease          | Reduction of absorption capacity<br>Loss of nutrients | Short bowel syndrome, ischemic bowel, complications of colorectal or bariatric surgery high-output stoma, high-output intestinal fistula Radiation or chemotherapy-related enteritis, mucositis, autoimmune enteropathy, gut graft-versus-host disease |  |  |
| Mechanical bowel obstruction                                                       | Blockage of intestinal lumen<br>Recurrent vomiting    | Malignant bowel obstruction, intestinal adhesions, stenosis or strictures, inflammatory disease, peritoneal carcinomatosis                                                                                                                             |  |  |
| Motility disorders Failure to tolerate adequate oral or ente<br>Recurrent vomiting |                                                       | Functional gastrointestinal disorders, ileus, scleroderma, acute pancreatitis, post-<br>operatively, gastrointestinal failure associated with critical illness, pseudo-obstruction,<br>adhesive disease                                                |  |  |
| Bowel rest needed                                                                  | Need to restrict oral or enteral intake               | Ischemic bowel, perioperative status, acute pancreatitis, chylous fistula                                                                                                                                                                              |  |  |
| Other                                                                              | Failure of oral or enteral nutrition                  | Unable to achieve or maintain secure oral or enteral access                                                                                                                                                                                            |  |  |
|                                                                                    |                                                       |                                                                                                                                                                                                                                                        |  |  |



Source: Nutrients, China Insights Consultancy


### Updated 2024 base year

### Overview of parenteral nutrition drug market in China

### Overview of parenteral nutrition drug market in China

|         |               |            |       | 2018-20 | 24 2 | 024-2033E |       |       |       |       |       |       |       |       |            |
|---------|---------------|------------|-------|---------|------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|------------|
| parente | eral nutritio | on drug ma | irket | 2.0%    |      | 3.1%      |       |       |       |       |       |       |       | Е     | illion RMB |
| 14.3    | 14.5          | 14.4       | 15.9  | 14.9    | 15.5 | 16.1      | 16.7  | 17.3  | 17.9  | 18.5  | 19.1  | 19.6  | 20.2  | 20.7  | 21.2       |
| 2018    | 2019          | 2020       | 2021  | 2022    | 2023 | 2024      | 2025E | 2026E | 2027E | 2028E | 2029E | 2030E | 2031E | 2032E | 2033E      |

### Market size of pediatric drug in China, 2018-2033E



CIC 灼识咨询

Source: China Insights Consultancy

Updated 2024 base year

### Competitive landscape of propofol emulsion injection in China, top 5 players, 2024

Competitive landscape of propofol emulsion injection in China, top 5 players, in terms of revenue, 2024

| Drug Name                    | Specification                                                                | Company                                 | First approval year | National VBP inclusion | Market share in 2024 |
|------------------------------|------------------------------------------------------------------------------|-----------------------------------------|---------------------|------------------------|----------------------|
| Propofol Injectable Emulsion | 20 ml: 0.2g<br>50 ml: 0.5g<br>50 ml: 1.0g                                    | ASPEN PHARMA                            | 2017                |                        | 42.4%                |
| Propofol Injectable Emulsion | 20ml:0.2g<br>50ml:0.5g<br>50ml:1.0g                                          | Fresenius Kabi Austria GmbH             | 2017                | -                      | 21.3%                |
| Propofol Injectable Emulsion | 10 ml: 0.1 g<br>10 ml: 0.2 g<br>20 ml: 0.2 g<br>50 ml: 0.5 g<br>50 ml: 1.0 g | 西安力邦制药<br>Xi'an Libang Pharmaceutical   | 1999                | 2023.11 (20ml:0.2g)    | 14.7%                |
| Propofol Injectable Emulsion | 10ml:0.1g<br>20ml:0.2g<br>50ml:0.5g                                          | 四川国瑞药业<br>Sichuan Guorui Pharmaceutical | 2003                | 2023.11 (50ml:0.5g)    | 13.3%                |
| Propofol Injectable Emulsion | 10ml:0.2g<br>20ml:0.2g<br>20ml:0.4g<br>50ml:0.5g<br>50ml:1.0g                | 广东 嘉博制药<br>Jiabo Pharmaceutical         | 2005                | 2023.11 (20ml:0.2g)    | 3.7%                 |

### Competitive landscape of propofol medium and long chain fat emulsion injection in China, top 5 players, 2024

### Competitive landscape of propofol medium and long chain fat emulsion injection in China, top 5 players, in terms of revenue, 2024

| Drug Name                                                | Specification                                                  | Company                                      | First approval year | National VBP inclusion | Market share in 2024 |
|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|---------------------|------------------------|----------------------|
| Propofol Medium and Long Chain<br>Fat Emulsion Injection | 10ml:0.1g<br>20ml:0.2g<br>50ml:0.5g<br>50ml:1.0g<br>100ml:1.0g | Fresenius Kabi Austria GmbH                  | 2015                | 2021.01 (20ml:0.2g)    | 36.2%                |
| Propofol Medium and Long Chain<br>Fat Emulsion Injection | 10ml:0.1g<br>20ml:0.1g<br>20ml:0.2g<br>50ml:0.5g<br>100ml:1.0g | 四川 国城药业<br>Sichuan Guorui Pharmaceutical     | 2014                |                        | 21.8%                |
| Propofol Medium and Long Chain<br>Fat Emulsion Injection | 10ml:0.1g<br>20ml:0.2g<br>50ml:0.5g<br>50ml:1.0g<br>100ml:1.0g | 广东嘉博制药<br>Jiabo Pharmaceutical               | 2013                | -                      | 13.7%                |
| Propofol Medium and Long Chain<br>Fat Emulsion Injection | 20ml:0.2g                                                      | 江苏盈秆生物制药<br>Jiangsu Yingke Biopharmaceutical | 2020                | 2021.01 (20ml:0.2g)    | 10.9%                |
| Propofol Medium and Long Chain<br>Fat Emulsion Injection | 20ml:0.2g<br>50ml:0.5g<br>50ml:1.0g                            | 杨子江药业集团<br>Yangtze River Pharmaceutical      | 2021                | 2021.01 (20ml:0.2g)    | 8.4%                 |

Note: Propofol Medium and Long Chain Fat Emulsion Injection was enrolled in the  $4^{\rm th}$  round of VBP program; Sichuan Guorui is a subsidiary of Biokin Pharmaceutical.



Source: NMPA; China Insights Consultancy

Updated 2024 base year

### Competitive landscape of dexmedetomidine hydrochloride injection in China, top 10 players, 2024

### Competitive landscape of dexmedetomidine hydrochloride Injection in China, top 10 players, in terms of revenue, 2024

| Drug Name                                  | Specification                                                                                 | Company                                             | First approval year | National VBP inclusion | Market share in 2024 |
|--------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------|------------------------|----------------------|
| Dexmedetomidine Hydrochloride<br>Injection | 1ml:0.1mg<br>2ml:0.2mg<br>50ml:0.2mg                                                          | 楊子江業業<br>Yangtze River Pharmaceutical               | 2018                | 2018.12 (2ml:0.2mg)    | 66.6%                |
| Dexmedetomidine Hydrochloride<br>Injection | 1ml:0.1mg<br>2ml:0.2mg<br>50ml:0.2mg                                                          | 江蘇恒瑞營稟<br>Jiangsu Hengrui Pharmaceutical            | 2009                |                        | 12.1%                |
| Dexmedetomidine Hydrochloride<br>Injection | 2ml:0.2mg                                                                                     | 正大天晴餐菓<br>Chia-Tai Tianqing Pharmaceutical          | 2021                | -                      | 4.1%                 |
| Dexmedetomidine Hydrochloride<br>Injection | 1ml:0.1mg<br>2ml:0.2mg                                                                        | 長欣業業<br>Cisen Pharmaceutical                        | 2013                | -                      | 3.8%                 |
| Dexmedetomidine Hydrochloride<br>Injection | 2ml:0.2mg                                                                                     | 江蘇恩華巢業<br>Jiangsu Nhwa Pharmaceutical               | 2011                |                        | 3.0%                 |
| Dexmedetomidine Hydrochloride<br>Injection | 1ml:0.1mg<br>2ml:0.2mg<br>4ml:0.4mg<br>10ml:1.0mg<br>20ml:0.08mg<br>50ml:0.2mg<br>100ml:0.4mg | 四川 圆鸡栗棠<br>Sichuan Guorui Pharmaceutical            | 2011                |                        | 2.2%                 |
| Dexmedetomidine Hydrochloride<br>Injection | 2mI:0.2mg                                                                                     | 四川美大康華康<br>Sichuan Meidakang Huakang Pharmaceutical | 2021                | -                      | 1.9%                 |
| Dexmedetomidine Hydrochloride<br>Injection | 2m1:0.2mg                                                                                     | 國業集團工業<br>China National Pharmaceutical Industry    | 2020                | -                      | 1.9%                 |
| Dexmedetomidine Hydrochloride<br>Injection | 1ml:0.1mg<br>2ml:0.2mg                                                                        | 石家莊四巢<br>Shijiazhuang No.4 Pharmaceutical           | 2021                | -                      | 1.2%                 |
| Dexmedetomidine Hydrochloride<br>Injection | 1ml:0.1mg<br>2ml:0.2mg                                                                        | 湖南科倫製菓<br>Hunan Kelun Pharmaceutical                | 2018                |                        | 0.6%                 |

CIC 灼识咨询

### Competitive landscape of Sevoflurane for inhalation, in terms of revenue, as of LPD

| Drug Name                  | Specification    | Company                                          | First approval year | National VBP inclusion | Market share in 2024 |
|----------------------------|------------------|--------------------------------------------------|---------------------|------------------------|----------------------|
| Sevoflurane for inhalation | 120ml;250ml      | 恆端醫業<br>Hengrui                                  | 2009                | -                      | 60.7%                |
| Sevoflurane for inhalation | 250ml            | 丸石製業<br>Maruishi Pharmaceutical                  | 2019                | -                      | 19.0%                |
| Sevoflurane for inhalation | 50ml;100ml;250ml | 含南贝特製業<br>Lunan better pharmaceutical            | 2008                | -                      | 10.3%                |
| Sevoflurane for inhalation | 250ml            | 百特製業<br>Baxter International                     | 2011                | •                      | 5.2%                 |
| Sevoflurane for inhalation | 250ml            | 河北一品製業<br>Hebei Yipin Pharmaceutical             | 2017                | -                      | 4.1%                 |
| evoflurane for inhalation  | 120ml;250ml      | 四川百利業業<br>Sichuan Baili Pharmaceutical           | 2023                |                        | 0.6%                 |
| evoflurane for inhalation  | 250ml            | 河北山姆士稟業<br>Hebei Samshi Pharmaceutical           | 2021                |                        | 0.1%                 |
| evoflurane for inhalation  | 120ml;250ml      | 福建海西联合药业<br>Fujian Highsea United Pharmaceutical | 2023                | -                      | <0.1%                |

Note: Sevoflurane for inhalation not been enrolled into national VBP program yet; Sichuan Baili is a subsidiary of Biokin Pharmaceutical.



Source: NMPA; China Insights Consultancy

Updated 2024 base year

# Competitive landscape of medium and long-chain fat emulsion injection in China, top 5 players, 2024

### Competitive landscape of medium and long chain fat emulsion injection in China, top 5 players, in terms of revenue, 2024

| Drug Name                                       | Specification           | Company                                 | First approval year | National VBP inclusion | Market share in 2024 |
|-------------------------------------------------|-------------------------|-----------------------------------------|---------------------|------------------------|----------------------|
| Medium and Long-chain Fat<br>Emulsion Injection | 100ml<br>250ml          | B. Braun                                | 2014                | 2021.06 (250ml)        | 33.8%                |
| Medium and Long-chain Fat<br>Emulsion Injection | 100ml<br>250ml          | 四川科伦药业<br>Sichuan Kelun Pharmaœutical   | 2017                | 2021.06 (250ml)        | 21.1%                |
| Medium and Long-chain Fat<br>Emulsion Injection | 250ml                   | 广东嘉博制药<br>Jiabo Pharmaceutical          | 2021                | 2021.06 (250ml)        | 15.6%                |
| Medium and Long-chain Fat<br>Emulsion Injection | 100ml<br>250ml<br>500ml | Baxter                                  | 2001                | -                      | 9.7%                 |
| Medium and Long-chain Fat<br>Emulsion Injection | 100ml<br>250ml<br>500ml | 四川国瑞药业<br>Sichuan Guorui Pharmaceutical | 2012                |                        | 6.0%                 |

Copyright © 2024 China Insights Consultancy. All nghts reserved.

### Competitive landscape of ribavirin in China, top 10 players, in terms of revenue, 2024

| Drug Name                                            | Specification                                                | Company                                                  | First approval year | VBP inclusion | Market share in 2024 |
|------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|---------------------|---------------|----------------------|
| Ribavirin/Ribavirin Spray                            | 0.02g; 0.05g; 0.1g(oral)<br>0.075g(spray)                    | 上海信谊药厂<br>Shanghai Sine Pharmaceutical                   | 1995                | N/A           | 11.3%                |
| Ribavirin Injection                                  | 1ml:0.1g; 5ml:0.5g; 10ml:1.0g                                | 中嘉生物科技(湖北)<br>Zhongjia Biopaharm(Hubei)                  | 1999                | N/A           | 5.9%                 |
| Ribavirin Injection                                  | 1ml:0.1g; 2ml:0.25g                                          | 陕西顿斯制药<br>Shaanxi Dunsi Phamnaœutical                    | 1999                | N/A           | 5.2%                 |
| Ribavirin Injection                                  | 1ml:0.05g; 1ml:0.1g                                          | 重庆迪康长江制药<br>Chongqing Dikang Changjiang<br>Pharmaœutical | 2002                | N/A           | 4.6%                 |
| Ribavirin                                            | 0.05g; 0.1g                                                  | 广东华南药业集团<br>Guangdong Huanan Pharmaceutical              | 1995                | N/A           | 4.6%                 |
| Ribavirin Injection                                  | 1ml:0.1g                                                     | 青岛金峰制药<br>Qingdao Jinfeng Pharmaceutical                 | 1999                | N/A           | 4.0%                 |
| ibavirin Granules/Ribavirin<br>Effervescent Granules | 0.05g; 0.1g; 0.15g(granules)<br>0.15g(effervescent granules) | 四川百利药业<br>Sichuan Baili Pharmaceuticals                  | 2010                | N/A           | 3.7%                 |
| Ribavirin Injection                                  | 1ml:0.1g                                                     | 西南药业<br>Southwest Pharmaceutical Co. Ltd                 | 2002                | N/A           | 3.1%                 |
| Ribavirin Injection/Ribavirin<br>Capsules            | 5ml:0.5g (Injection)<br>0.15g (Capsules)                     | 浙江诚意药业                                                   | 2003                | N/A           | 3.1%                 |
| Ribavirin Injection                                  | 1m1:0.1g; 2m1:0.1g                                           | 山东益健药业<br>Shandong Yijian Pharmaceutical                 | 1999                | N/A           | 3.0%                 |

Note: Ribavirin has not been enrolled into VBP program yet; Sichuan Baili is a subsidiary of Biokin Pharmaceutical.



Source: NMPA; China Insights Consultancy

Updated 2024 base year

### Competitive landscape of ornidazole in China, top 10 players, in terms of revenue, 2024

### Competitive landscape of ornidazole in China, top 10 players, in terms of revenue, 2024

| Drug Name                                                                             | Specification                                                                                    | Company                                                              | First approval year | National VBP inclusion                                  | Market share in 2024 |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|---------------------------------------------------------|----------------------|
| Ornidazole Tablet/Ornidazole<br>Injection/Ornidazole and<br>Sodium Chloride Injection | 3ml:0.5g; etc. (injection)<br>100ml:0.25g; etc.<br>(ornidazole and sodium chloride<br>injection) | 四川科伦制药<br>Sichuan Kelun Pharmaceutical                               | 2005                | 2023.03 (3ml:0.5g, injection)<br>2022.07(0.25g, tablet) | 23.2%                |
| Ornidazole Injection/Ornidazole<br>Vaginal Effervescent<br>Tablets/Omidazole Capsules | 3ml:0.5g; etc.(injection)<br>0.5g (vaginal effervescent<br>tablets)<br>0.25g (capsules)          | 西安万隆制药<br>Xi'an Wanlong Pharmaceutical                               | 2003                | 2023.03 (3ml:0.5g, injection)                           | 15.8%                |
| Ornidazole Capsules                                                                   | 0.25g                                                                                            | 扬子江南京海陵药业<br>Yangtze River Nanjing Hailing Pharmaceutical            | 2003                | -                                                       | 13.4%                |
| Ornidazole Tablets/Ornidazole<br>Vaginal Suppositories                                | 0.25g; 0.5g (tablets)<br>0.5g (vaginal suppositories)                                            | 华东医药(西安)博华制药<br>Huadong Medicine (Xi'an) Bodyguard<br>Pharmaceutical | 2001                | 2022.07 (0.5g, tablet)                                  | 7.9%                 |
| Ornidazole and Sodium<br>Chloride Injection                                           | 100ml:0.25g<br>100ml:0.5g                                                                        | 陕西金裕制药<br>Shaanxi Jinyu Pharmaceutical                               | 2004                | -                                                       | 5.0%                 |
| Ornidazole Dispersible Tablets                                                        | 0.25g                                                                                            | 天方药业<br>Topfond Pharmaceutical                                       |                     | -                                                       | 4.0%                 |
| Ornidazole Injection                                                                  | 3ml:0.5g<br>6ml:1.0g                                                                             | 北京双鹭药业<br>Beijing Shuanglu Pharmaceutical                            | 2018                | 2023.03 (3ml:0.5g, injection)                           | 2.2%                 |
| Ornidazole Tablets/Ornidazole<br>Dispersible Tablets                                  | 0.25g; 0.5g (tablets)<br>0.25g (dispersible tablets)                                             | 湖南九典制药*<br>Hunan Jiudian Pharmaceuticals                             | 2004                | 2022.07(0.25g, tablet)<br>2022.07(0.5g, tablet)         | 2.1%                 |
| Ornidazole Injection                                                                  | 0.25g                                                                                            | 湖北长联杜勒制药<br>Hubei Changlian Dulle Pharmaceutical                     | 2003                | -                                                       | 2.0%                 |
| Ornidazole Injection/Ornidazole<br>Tablets/Omidazole Vaginal<br>Effervescent Tablets  | 3ml:0.5g; etc.(injection)<br>0.5g (tablets)<br>0.5g (vaginal effervescent<br>tablets)            | 南京圣和药业<br>Nanjing Sanhome Pharmaceutical                             | 2002                | -                                                       | 1.4%                 |

Copyright @ 2024 China Insights Consultancy. All rights reserved.

### Competitive landscape of Racecadotril, top 5 players, in terms of revenue, as of LPD

| Specification    | Company                                     | First approval year                                      | National VBP inclusion                                                                                                                         | Market share in 2024                                |
|------------------|---------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 10mg             | 四川百利药业<br>Sichuan Baili Pharmaceutical      | 2005                                                     |                                                                                                                                                | 66.4%                                               |
| 10 mg;30 mg;0.1g | 江苏正大丰海制药<br>Jiang su CTFH Pharmaceutical    | 2005                                                     | -                                                                                                                                              | 33.4%                                               |
| 30mg; 0.1g       | Bioprojet Pharma                            | 2013                                                     | -                                                                                                                                              | 0.2%                                                |
| 6mg              | 亚宝药业四川制药<br>Yabao Pharmaceutical            | 2005                                                     | -                                                                                                                                              | <0.1%                                               |
| 30mg             | 扬子江北京海燕药业<br>Beijing Haiyan Pharmaceutical  | 2005                                                     | -                                                                                                                                              | -                                                   |
|                  | 10mg<br>10mg;30mg;0.1g<br>30mg; 0.1g<br>6mg | 10mg 四川百利药业 Sichuan Baili Pharmaceutical  10mg;30mg;0.1g | 10mg 四川百利药业 10mg Sichuan Baili Pharmaceutical 2005  10mg;30mg;0.1g 江苏正大丰海制药 Jiangsu CTFH Pharmaceutical 2005  30mg; 0.1g Bioprojet Pharma 2013 | 回川百利药业 Sichuan Baili Pharmaceutical  10mg;30mg;0.1g |

Note: Racecadotril has not been enrolled into VBP program yet; Sichuan Baili is a subsidiary of Biokin Pharmaceutical.



Source: NMPA; China Insights Consultancy

Updated 2024 base year

### Competitive landscape of Glucose Electrolyte, in terms of revenue, 2024

### Competitive landscape of Glucose Electrolyte, in terms of revenue, as of LPD

| Drug Name                                | Specification                                                                                                  | Company                                | First approval year | VBP inclusion | Market share in 2024 |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------|---------------|----------------------|
| Glucose electrolyte effervescent tablets | 0.138g sodium<br>0.098g potassium<br>0.16g chloride<br>1.62g anhydrous glucose<br>0.384g anhydrous citric acid | 四川百利药业<br>Sichuan Baili Pharmaceutical | 2013                |               | 100.0%               |

### Competitive landscape of astragalus market, top5 in terms of revenue, as of LPD

| Drug Name           | Specification | Company                                       | First approval year | National VBP inclusion | Market share in 2024 |
|---------------------|---------------|-----------------------------------------------|---------------------|------------------------|----------------------|
| Astragalus granules | 4g;15g        | 四川百利药业<br>Sichuan Baili Phamaceutical         | 1999                |                        | 46.3%                |
| Astragalus slices   | 0.55g         | 四川国康药业<br>Sichuan Guokang Pharmaceutical      | 2009                | -                      | 14.0%                |
| Astragalus slices   | 0.41g         | 四川 奇力制药<br>Sichuan Qili Phamaceutical         | 2009                |                        | 13.0%                |
| Astragalus granules | 4g;15g        | 南京同仁堂药业<br>Nanjing Tongrentang Pharmaceutical | 1999                | -                      | 12.4%                |
| Astragalus granules | 4g;15g        | 贵州汉方药业<br>Guizhou Hanfang Pharmaceutical      | 1999                | -                      | 6.3%                 |

Note: Sichuan Baili is a subsidiary of Biokin Pharmaœutical.



Source: NMPA; China Insights Consultancy

20250925

# Competitive landscape of Chaihuang market, top5 in terms of revenue, 2024

### Competitive landscape of Chaihuang market, top5 in terms of revenue, as of LPD

| Drug Name                               | Specification      | Company                                  | First approval year | National VBP inclusion | Market share in 2024 |
|-----------------------------------------|--------------------|------------------------------------------|---------------------|------------------------|----------------------|
| Chaihuang granules/<br>Chaihuang slices | 3g;4g;5g/0.55g(2g) | 四川百利药业<br>Sichuan Baili Pharmaceutical   | 1999                |                        | 78.1%                |
| Chaihuang oral solution                 | 10ml               | 山东福牌制药<br>Shandong FuPai Pharmaceutical  | 1995                | -                      | 8.1%                 |
| Chaihuang granules/<br>Chaihuang sliœs  | 4g/0.5g            | 江西京通美联药业<br>Jiangxi JTML Pharmaœutical   | 2000                |                        | 5.4%                 |
| Chaihuang sliœs                         | 0.55g(2g)          | 陕西盘龙药业<br>Shaanxi Panlong Pharmaceutical | 2005                | -                      | 4.4%                 |
| Chaihuang granules                      | 4g                 | 河南灵佑药业<br>Henan Livu Pharmaceutical      | 2000                | -                      | 1,9%                 |

### Other supplements

| Types of products    | Content                   | Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anesthesia           | Market threats/challenges | Price may face VBP pressure: As of LPD, some anesthetic drugs have already been covered in past several rounds of VBP schemes. As VBP schemes roll-out and cover more drugs, it is likely that a wider range of anesthetic drugs would be covered in VBP to improve drug accessibility and reduce medical expenses, which would introduce volatility in market growth.                                                                                                                                                                                                                                                                                                                        |
| Parenteral nutrition | Entry barriers            | <ul> <li>Technical barrier: Parenteral nutrition solutions involve delicate API supply chain, complex formula design,<br/>sophisticated production processes and strict quality control. The R&amp;D cycle of parenteral nutrition solution<br/>is extensive, with intensive investment and high capital requirement to fund research activities from basic<br/>research to clinical trials, and finally to marketing approval.</li> </ul>                                                                                                                                                                                                                                                    |
| Parenteral nutrition | Market opportunities      | <ul> <li>Continuous improvement in the formula of parenteral nutrition: The formula of parenteral nutrition is becoming more personalized. Companies are optimizing the composition ratio of amino acids and other ingredients to better cater to different patient groups.</li> <li>Diversification of specifications: Traditional single-chamber parenteral nutrition bags require a complex mixing process before use, which increases the risk of contamination and the possibility of operational errors. Multi-chamber bags store different ingredients separately and allow them to be mixed more easily before use without manual errors, which would drive market growth.</li> </ul> |

CIC 约识咨询

Source: Menet; China Insights Consultancy

### Other supplements

### Other supplements

| Types of products    | Content                      | Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parenteral nutrition | Market<br>threats/challenges | <ul> <li>Price may face VBP pressure: As of LPD, some parenteral nutrition products have already been covered in the<br/>VBP schemes, with a price cut of nearly 70%.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                |
| Anti-infective       | Market<br>threats/challenges | <ul> <li>Inclusion into VBP list may lead to reduction in price: As the development of VBP scheme, more drugs are now included in the list. While acquiring steady sales, the inclusion into VBP list may lead to the reduction in price, causing market volatility.</li> <li>Rigid supervision may restrain the growth of anti-infective drugs. With the abuse of anti-infective drugs, the anti-infective drug use in hospitals are under rigid supervision, which may be a challenge to the market growth.</li> </ul>                        |
| Pediatric drugs      | Entry barriers               | <ul> <li>Difficulties in R&amp;D: Due to the unique target patient groups of pediatric drugs, the development of such drugs<br/>encounters R&amp;D barriers. Substantial variation exists between children and adults in the metabolism, renal<br/>clearance and other drug disposition mechanisms. Strong differences also exists among children of different ages<br/>in the ability to metabolize, absorb, excrete, and transform medications. These differences poses higher<br/>requirements in development of pediatric drugs.</li> </ul> |

### Other supplements

| Types of products | Content                   | Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pediatric drugs   | Market opportunities      | Supportive polices encourage the development of pediatric drug market: China government has supported R&D of pediatric drugs by releasing multiple policies encouraging the development of pediatric drugs, such as the 4th batch of encouraged pediatric drugs list released in August 2023 by NHC. The introduction of supportive policies is a major driver for pediatric market growth.                                                                                                                                                                                                |
| Pediatric drugs   | Market threats/challenges | <ul> <li>High requirement in drug specifications: Due to the comparably lower patient compliance of children,<br/>pediatric drugs must be designed with selected specifications, such as appealing flavors and dosage forms,<br/>to cater to certain preferences of children, which requires extra R&amp;D efforts and commitment of capital and<br/>talent.</li> </ul>                                                                                                                                                                                                                    |
| TCM               | Market threats/challenges | <ul> <li>Difficulties in quality control and standardization: Since most TCMs are made of traditional herbs which are not standardized products, the regulatory and policy framework on TCM is still evolving to establish oversight on TCM quality control and standardization.</li> <li>Shortage in valid clinical evidence: Some TCMs are not equipped with strong enough clinical evidences reported in well-designed clinical trials. Clinical trial design of TCMs often require significant capital and talent dedication, which might exert influence in market growth.</li> </ul> |

CIC 约识咨询

Source: Menet; China Insights Consultancy

### **VBP** statements

Processed TCM

Barriers & drivers

- The market size of Dexmedetomidine in China during 2018-2023 was declining due to the fact that Dexmedetomidine was included in the first round of national centralized drug procurement since 2019.
- The market size of Propofol Medium and Long Chain Fat Emulsion in China during 2018-2023 was declining due to the fact that Propofol Medium and Long Chain Fat Emulsion was included in the fourth batch of national centralized procurement since 2021.
- The market size of Medium and Long Chain Fat Emulsion (C8-24) in China during 2018-2023 was declining due to the fact that Medium and Long Chain Fat Emulsion (C8-24) was included in the fifth batch of national centralized procurement since 2021.
- The market size of Omidazole in China during 2018-2023 was declining due to the fact that Ornidazole was included in in the eighth batch of national centralized procurement since 2023.

### **OSS** verification

- · According to CIC, Leweijing was ranked fourth in China's propofol emulsion injection market, with a market size of approximately 12.1% in 2023
- According to CIC, Leweitai was ranked third in China's propofol medium and long chain fat emulsion injection market, with a market share of approximately 20.1% in 2023
- According to CIC, Youmeining was ranked eighth in dexmedetomidine hydrochloride injection market, with a market share of approximately 1.2% in 2023
- According to CIC, Tianze ranked the sixth in China's medium and long chain fat emulsion injection market, with a market size of approximately 5.1% in 2023
- · According to CIC, Xinbolin was ranked as the sixth most popular ribavinn product in China, with a market share of approximately 3.4% in 2023
- According to CIC, Aobolin was ranked 17th in China's ornidazole market, with a market share of approximately 0.5% in 2023
- · According to CIC, Dulabao was the best-selling racecadotril products in China, with a market share of approximately 66.6% in 2023
- · According to CIC, our glucose electrolyte effervescent tablet is the only glucose electrolyte product in China
- Astragalus granule was sold in 30 provinces across China, and was ranked second in China's astragalus market with a market share of approximately 30.0% in 2022, according to
- Chaihuang granule was sold in 25 provinces across China, and was the best-selling Chaihuang granule product in China with a market share of approximately 92.4% in 2022, according to CIC

Coorrant @ 2024 China Insights Consultancy. All rights reserv



Source: China Insights Consultancy

### OSS verification

- Anesthesia, is the most major branches among nervous system drugs in terms of sales revenue of pharmaceuticals in 2023. Nervous system drugs is the 6th largest therapeutic area
  in China and anesthesia accounted for 19.0% of it in the same year. In terms of sales revenue, the anesthesia pharmaceutical market grew at a CAGR of 6.5% from RMB14.9 billion
  in 2018 to RMB20.4 billion in 2023, according to CIC.
- The significant unmet clinical demands, increase in patients' affordability and willingness to pay for treatment, and favorable government policies will continue to drive the rapid growth
  of the anesthesia pharmaceutical market in China, according to the same source.
- According to CIC, the market for propofol medium/long chain fat emulsion injection in China was estimated to stabilize at approximately RMB0.7 billion by 2033. Our propofol
  medium/long chain fat emulsion injection ranked as the 3rd most popular propofol product in China, with a market share of approximately 20.1% in 2023, according to CIC.
- According to CIC, the market for dexmedetomidine hydrochloride injection in China was estimated to stabilize at approximately RMB1.6 billion by 2033. Our dexmedetomidine hydrochloride injection ranked as the 8th most popular propofol product in China, with a market share of approximately 1.2% in 2023, according to CIC.
- Parenteral nutrition was the largest therapeutic area in China in terms of sales revenue of pharmaceuticals in •, accounting for •% of the overall pharmaceutical market in the same year. In terms of sales revenue, the parenteral nutrition pharmaceutical market grew at a CAGR of •% from RMB• billion in to RMB• billion in •, according to CIC. The rising prevalence of chronic diseases, increased awareness of clinical nutrition, advancements in healthcare infrastructure, and favorable government policies will continue to drive the rapid growth of the parenteral nutrition pharmaceutical market in China, according to the same source.
- According to CIC, the market for medium/long chain fat emulsion injection in China was RMB0.7 billion in 2023 and was estimated to stabilize at approximately RMB0.7 billion by 2033.
   Tianzhe ranked as the 6th most popular nutrition product in China, with a market share of approximately 5.1% in 2023, according to CIC.
- Anti-infectives was the 3rd largest therapeutic area in China in terms of sales revenue of pharmaceuticals in 2023, accounting for 14.0% of the overall chemical pharmaceutical market
  in the same year. In terms of sales revenue, the anti-infectives pharmaceutical market grew at a CAGR of 5.4% from RMB178.9 billion in 2023 to RMB294.2 billion in 2033, according
  to CIC.

### **OSS** verification

- According to CIC, the market for ribavirin granule in China was estimated to be approximately RMB0.9 billion in 2032, and grew at a CAGR of 3.2% from 2023 to 2033. Xinbolin ranked as the 6th most popular anti-infectives product in China, with a market share of approximately 3.4% in 2023, according to CIC.
- Pediatric drugs, including racecadotril and glucose electrolyte solutions, play a vital role in managing common childhood conditions such as acute diarrhea and dehydration. Racecadotril, an enkephalinase inhibitor, effectively reduces fluid secretion in the intestines without altering gut motility, making it ideal for pediatric patients by minimizing adverse effects like constipation. Its use improves clinical outcomes and reduces hospitalization duration, thereby enhancing recovery times. Similarly, glucose electrolyte solutions are fundamental in treating dehydration caused by diarrhea or vomiting. These solutions replenish essential fluids and electrolytes, ensuring proper hydration and electrolyte balance, and are a cornerstone of oral rehydration therapy recommended globally. The inclusion of glucose in these solutions facilitates the efficient absorption of sodium and water in the intestine, boosting rehydration effectiveness. As pediatric dehydration and diarrhea remain prevalent issues worldwide, the demand for these drugs is expected to grow, driven by their proven safety, efficacy, and ease of use, particularly in both developed and emerging markets. Pediatric drugs market, in terms of sales revenue, grew at a CAGR of 9.3% from RMB125.4 billion in 2023 to RMB305.1 billion in 2023, according to CIC.
- According to CIC, the market for racecadotril granule in China was RMB28.5 million in 2023 and was estimated to stabilize at approximately RMB30.0 million by 2033. Dulabao ranked
  as the 1st most popular pediatric drugs product in China, with a market share of approximately 66.6% in 2023, according to CIC.
- According to CIC, the market size for glucose electrolyte effervescent tablet in China rose from RMB8.1 million in 2018 to RMB18.5 million in 2023 at a CAGR of 18.0%, and is
  projected to reach RMB47.1 million in 2033 at a CAGR of 8.5% from 2023. Leyeping ranked as the 1st most popular pediatric drugs product in China, with a market share of
  approximately 100% in 2023, according to CIC.
- Traditional Chinese medicine market, in terms of sales revenue, grew at a CAGR of 1.3% from RMB 395.3 billion in 2018 to RMB 422.5 billion in 2023, according to CIC.
- · our astragalus granules achieved a market share exceeding 90% in sample hospitals, according to CIC.
- · During the Track Record Period, our Chaihuang granule achieved a market share exceeding 90% in sample hospitals.
- · Our chailhuang granule ranked as the most popular Chailhuang granule products in China, with a market share of approximately 92.4% in 2022, according to CIC.
- · According to CIC, the market for omidazole capsule in China was estimated to stabilize at approximately RMB 1.2 billion by 2033.



Source: China Insights Consultancy